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CHAPTER 1

NÚMEROS COMPLEJOS Y FUNCIONES HOLOMORFAS

El número imaginario es un recurso sutil y maravilloso del esṕıritu divino, casi
un anfibio entre el ser y el no ser.

Leibnitz

Ciertas ecuaciones algebraicas sólo tienen solución en nuestra imaginación.

René Descartes

Los números complejos aparecen por primera vez en los trabajos de Cardano y Bombelli
sobre el cálculo de las ráıces de la ecuación de tercer grado x3+1 = 0, siendo usados con recelo
hasta finales del siglo XVIII cuando Gauss les concede un lugar privilegiado en el Olimpo de
las Matemáticas mediante la prueba del Teorema Fundamental del Álgebra.

La extensión del sistema de números reales al sistema de números complejos es importante
no solo en el campo de las matemáticas, donde su uso es común en casi todas las áreas, sino
también en el ámbito de la f́ısica:

1. Análisis de Vibraciones Mecánicas y Ondas: La variable compleja se utiliza para
estudiar sistemas vibracionales, como osciladores armónicos amortiguados, y soluciones
de ondas planas y esféricas.

2. Electromagnetismo y Dinámica de Fluidos: Diversas situaciones en electromag-
netismo y f́ısica de fluidos involucran la llamada ecuación de Laplace

∇2ψ =
∂2ψ(x.y)

∂x2
+
∂2ψ(x.y)

∂y2
= 0 (1.1)

para pares de funciones u y v. Una de estas funciones podŕıa corresponder, por ejem-
plo, con un potencial electrostático bidimensional, mientras que la otra, que genera
una familia de curvas ortogonales a la primera, podŕıa describir el campo eléctrico E⃗.
Alternativamente, la primera función podŕıa describir el potencial de velocidades de un
fluido irrotacional, mientras que la segunda correspondeŕıa a la función de flujo.

3. Análisis de Circuitos Eléctricos: La impedancia en circuitos de corriente alterna
se representa mediante números complejos, lo que facilita el análisis de tensiones y
corrientes.
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4. Óptica: La propagación de la luz a través de medios con diferentes ı́ndices de refracción
se puede describir mediante ecuaciones diferenciales en variable compleja.

5. Teoŕıa de la Elasticidad: Las transformaciones de coordenadas complejas son útiles
para resolver problemas en cuerpos sólidos deformables.

6. Mecánica Cuántica: La mecánica cuántica hace un amplio uso de la variable compleja
en la descripción de las funciones de onda y los operadores hermı́ticos.

7. Teoŕıa de la Relatividad General: La complejización de soluciones de las ecuaciones
de Einstein es una poderosa herramienta para extender las regiones en la que estas son
válidas (continuación anaĺıtica).

8. F́ısica de Part́ıculas: Las integrales en el plano complejo juegan un papel fundamental
en la formulación de propagadores en teoŕıa cuántica de campos.

9. Problemas de Transferencia de Calor: Las transformaciones conformes y la vari-
able compleja se aplican para resolver ecuaciones de calor en geometŕıas complicadas.

10. Problemas de Difusión y Transporte: La variable compleja se aplica en problemas
de difusión de part́ıculas y transporte de calor en medios heterogéneos. Además, la
ecuación de Helmholtz se convierte en una ecuación de difusión mediante la comple-
jización de un parámetro real, transformando, por tanto, funciones de Bessel y funciones
de Bessel esféricas en funciones de Bessel modificadas y funciones de Bessel esféricas
modificadas.

1.1 Propiedades básicas

La extensión del sistema de números reales al sistema de números complejos está basada en
la existencia de una unidad imaginaria i y una regla algebraica

i2 = −1 . (1.2)

La etiqueta imaginaria refleja la naturaleza estrictamente matemática de esta cantidad:
ninguna experiencia f́ısica produce como resultado una medición de i.

Combinando aritméticamente la unidad imaginaria i y los números reales ordinarios,
obtenemos el conjunto de los números complejos, denotado tradicionalmente con el śımbolo C,
en analoǵıa con la notación R para números reales. Un número complejo z está determinado
de manera única por la expresión1

z = x+ iy, x, y ∈ R , (1.3)

1Es habitual representar los números complejos con las letras z y w, reservando las letras x, y, u, v para los
números reales.
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con x e y un par de números reales llamados parte real y parte imaginaria de z.

Re z ≡ x , Im z ≡ y . (1.4)

Dicha representación se conoce como forma binomial o cartesiana del número complejo z.
Es importante notar que la relación i2 = −1 no permite escribir directamente i =

√
−1. De

hecho, el uso inocente de esta última expresión puede dar lugar a inconsistencias del tipo

−1 = i2 = ii =
√
−1
√
−1 =

√
(−1)(−1) =

√
1 = 1 −→ 1 = −1 .

El error se debe obviamente a qué estamos interpretando −1 como un número real, a pesar
de que los números reales negativos no tienen ráız cuadrada real. En otras palabras, estamos
usando las ráıces de números complejos sin haberlas definido previamente, dando por supuesto
que estas satisfacen las mismas propiedades que las ráıces de números reales positivos. Sin
embargo, como veremos más adelante, la igualdad

√
z1
√
z2 =

√
z1z2, válida para z1, z2 ∈ R+,

no es cierta en general para z1, z2 ∈ C.

Ejemplo: Parte real e imaginaria de z = 2− 5i

La parte real del número complejo z = 2− 5i es 2. Lo escribimos como Re z = 2. La
parte imaginaria de z es −5. Lo escribimos como Im z = −5

Dos números complejos z1 = x1 + iy1 y z2 = x2 + iy2 son iguales si y solo si sus partes reales
e imaginarias también lo son,

x1 = x2 , Re z1 = Re z2 ,

y1 = y2 , Im z1 = Im z2 .

(1.5)

(1.6)

Si la parte imaginaria de un número complejo es cero, Im(z) = 0, decimos que z es puramente
real. Por el contrario, si la parte real es Re(z) = 0, nos referimos a z como puramente
imaginario o imaginario puro.

Puesto que C es isomorfo a R2, los números x e y se corresponden con las coordenadas
cartesianas ortogonales de un punto en el plano. Es, por tanto, común visualizar los números
complejos en el llamado plano complejo, plano de Gauss o plano de Argand. El eje horizontal
recibe el nombre de eje real, y el eje vertical recibe el nombre de eje imaginario.

Las operaciones con números complejos se realizan utilizando las reglas aritméticas habit-
uales, pero teniendo siempre en cuenta la propiedad (1.2). Por ejemplo, dados dos números
complejos z1 = x1 + iy1 y z2 = x2 + iy2, su suma y multiplicación están dadas por

z1 + z2 = (x1 + x2) + i (y1 + y2) , z1 · z2 = (x1x2 − y1y2) + i (x1y2 + x2y1) .

(1.7)
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La adición y resta de números complejos se corresponde exactamente con la adición y resta
de vectores en el plano. Nótese, sin embargo, que la multiplicación de números complejos no
se corresponde con ninguna operación de vectores estándar.2

Ejemplo: Suma y producto de (3 + 4i) y (1 + 2i)

(3 + 4i) + (1 + 2i) = 4 + 6i .

(3 + 4i) · (1 + 2i) = (3 · 1− 4 · 2) + i(3 · 2 + 4 · 1) = −5 + 10i .

Aparte de lo anterior, no se producen cambios sustanciales en la estructura algebraica de
los números complejos en comparación con los números reales. En particular, la unidad
multiplicativa sigue siendo la unidad real 1, el elemento neutro aditivo coincide con el cero
real 0, existen elementos inversos aditivos y multiplicativos

z1 + (−z1) = 0 , z1z
−1
1 = 1 , (1.8)

y

z1 + z2 = z2 + z1 , (Commutatividad de la adición) (1.9)

z1 + (z2 + z3) = (z1 + z2) + z3 , (Asociatividad de la adición) (1.10)

z1z2 = z2z1 , (Commutatividad dl prducto) (1.11)

z1(z2z3) = (z1z2)z3 , (Asociatividad del producto) (1.12)

z1(z2 + z3) = z1z2 + z1z3 , (Distributividad) . (1.13)

para todo z1, z2, z3 ∈ C. En general, cualquier conjunto que satisfaga las propiedades ante-
riores se denomina cuerpo. En particular, decimos que el cuerpo C contiene una copia del
cuerpo real, R ∋ x 7→ x+ i0 ∈ C.

Ejemplo: Determinación de z−1

Escribiendo z = x+ iy y z−1 = u+ iv,

zz−1 = (xu− yv) + i(xv + yu) = 1 ,

e igualando partes reales e imaginarias, tenemos

u =
x

x2 + y2
, v = − y

x2 + y2
,

y por tanto

z−1 =
x

x2 + y2
− i

y

x2 + y2
. (1.14)

2De hecho, no puede hacerlo, puesto que no existe un concepto de inverso multiplicativo para los productos
escalar y vector usuales.
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1.2 Representación matricial

Un número complejo z = x+ iy se puede representar alternativamente como una matriz 2×2
de la forma (

x −y
y x

)
.

En esta representación, las identidades aditivas y multiplicativas son la matriz cero y la matriz
identidad y la suma y la multiplicación de números complejos se realizan siguiendo las reglas
usuales para la suma y multiplicación de matrices. En resumen, la aritmética es la misma
que en la sección anterior, pero expresada ahora en formato matricial,(

x1 −y1
y1 x1

)
+

(
x2 −y2
−y2 x2

)
=

(
x1 + x2 −y1 − y2
y1 + y2 x1 + x2

)
,(

x1 −y1
y1 x1

)
·
(
x2 −y2
y2 x2

)
=

(
x1x2 − y1y2 −(y1x2 + x1y2)
y1x2 + x1y2 x1x2 − y1y2

)
.

(1.15)

En esta notación, la unidad imaginaria se corresponde con la matriz(
0 −1
1 0

)
, (1.16)

la cual verifica [i2 = −1] (
0 −1
1 0

)(
0 −1
1 0

)
=

(
−1 0
0 −1

)
. (1.17)

Un número complejo admite, por tanto, la descomposición

(
x −y
y x

)
= x

(
1 0
0 1

)
+ y

(
0 −1
1 0

)
. (1.18)

1.3 Complejo conjugado

Dado un número complejo z = x+ iy, el número complejo

z = x− iy (1.19)

se denomina el complejo conjugado de z, siendo también utilizada la notación alternativa z∗

para la misma cantidad. En términos del plano complejo, esta operación se corresponde con
una reflexión con respecto al eje real.
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Algebraicamente, tenemos además

z = z , Re z =
1

2
(z + z) , Im z =

1

2i
(z − z) , (1.20)

y

z1 + z2 = z1 + z2 , z1z2 = z1z2 , z1/z2 = z1/z2 (z2 ̸= 0) , (1.21)

con z1, z2 ∈ C.

Ejemplo: Suma y producto de los conjugados de z1 = −7 + 6i y z2 = 4− 9i

Dados dos números complejos z1 = −7 + 6i y z2 = 4− 9i, tenemos

z1 = −7− 6i , z2 = 4 + 9i .

La suma y el producto de estos números coincide exactamente el conjugado de la suma
z1 + z2 = −3− 3i y el conjugado del producto z1 · z2 = 26 + 87i,

z1 + z2 = (−7− 6i) + (4 + 9i) = −3 + 3i ,

z2 · z2 = (−7− 6i) · (4 + 9i) = 26− 87i .

El complejo conjugado permite calcular divisiones de manera eficiente. En particular, dados
dos números z1 = x1 + y1i por z2 = x2 + y2i, con x2, y2 ̸= 0, tenemos

z1
z2

=
x1 + iy1
x2 + iy2

· x2 − iy2
x2 − iy2

=
x1x2 + y1y2
x22 + y22

+ i
y1x2 − x1y2
x22 + y22

. (1.22)

Ejemplo: Cálculo de (2 + 3i)/(4 + i)

2 + 3i

4 + i
=

(2 + 3i)(4− i)
(4 + i)(4− i)

=
11 + 10i

17
=

11

17
+

10

17
i .
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1.4 Módulo

Al contrario de lo que ocurre con números reales, no podemos definir una relación de orden
⩽ en C compatible con la estructura algebraica. En otras palabras, es imposible definir un
concepto de número complejo positivo en el que la suma y el producto de números complejos
positivos sigan siendo positivos. Podemos, sin embargo, introducir el concepto de módulo de
un número complejo

|z| = |x+ iy| =
√
x2 + y2 =

√
zz , (1.23)

con propiedades similares al valor absoluto de un número real. Se tiene en particular que

|z| = |z| , zz = |z|2 , −|z| ≤ Re z , Im z ≤ |z| , (1.24)

y

|z1z2| = |z1||z2| , |z1/z2| = |z1|/|z2| (z2 ̸= 0) ,

|z1 + z2| ≤ |z1|+ |z2| , ||z1| − |z2|| ≤ |z1 − z2| ,
1/|z1 − z2| ≤ 1/(|z1| − |z2|) , (|z1| > |z2|) ,

(1.25)

para z1, z2 ∈ C. Puesto que un número real x se puede considerar como un número complejo
con parte imaginaria nula, las definiciones de módulo, ya sea como número real o como
número complejo, son consistentes entre śı,

|x| =
√
x2 =

√
x2 + 02 = |x+ i0| , x ∈ R , (1.26)

dando lugar a la nomenclatura de valor absoluto de un número complejo para referirse a su
módulo, como extensión del concepto de valor absoluto introducido en los números reales.

Ejemplo: Módulo de z1 = 7− 4i y w = 2 + i y desigualdad triangular

El número complejo z1 = 7− 4i tiene módulo |z1| =
√

72 + (−4)2 =
√
65.

El número complejo w = 2 + i tiene módulo |z2| =
√
22 + 12 =

√
5.

El número complejo z + w = 9− 3i tiene módulo |z1 + z2| =
√

92 + (−3)2 =
√
90.

Estas tres cantidades satisfacen la desigualdad triangular, |z1 + z2| ≤ |z1| + |z2|, en
concreto,

√
90 ≤

√
65 +

√
5.

Puesto que

z ·
(

z

|z|2

)
=
|z|2

|z|2
= 1 , (1.27)

el inverso z−1 de z ̸= 0 está dado por z/|z|2, que tiene la forma de un número complejo

z−1 =
z̄

|z|2
=
x− iy
|z|2

=
x

|z|2
− i y

|z|2
, (1.28)

y coincide exactamente con (1.14).



1.5 Forma polar y argumento 9

Nótese finalmente que la distancia Eucĺıdea entre dos puntos (x1, y1) , (x2, y2) se corresponde
con el módulo de la diferencia entre los números complejos correspondientes,

|z1 − z2| =
√

(x1 − x2)2 + (y1 − y2)2, z1 = x1 + iy1 . (1.29)

La topoloǵıa en C permite, por lo tanto, los conceptos de punto de acumulación, punto
interior y punto exterior de un conjunto, aśı como los conceptos de convergencia para una
sucesión o una serie.

1.5 Forma polar y argumento

La representación geométrica de los números complejos permite introducir de manera nat-
ural la llamada forma polar o trigonométrica de un número complejo. Considerando las
coordenadas polares en el plano,

x = |z| cos θ
y = |z| sen θ

−→
|z| =

√
x2 + y2 ,

θ = arctan(x/y) ,
(1.30)

obtenemos3

z = |z|(cos θ + i sen θ) . (1.31)

En esta representación el módulo de z introducido anteriormente representa la longitud del
vector correspondiente a x+ iy, y θ es el ángulo desde el eje positivo hasta el vector x+ iy.
En términos matriciales esta expresión toma la forma

(
x −y
y x

)
= |z|

(
cos θ − sen θ
sen θ cos θ

)
, (1.32)

con (
cos θ − sen θ
sen θ cos θ

)
(1.33)

una matriz de rotación asociada a un giro de ángulo θ en sentido contrario a las agujas del
reloj.

Debido a la periodicidad de las funciones trigonométricas, el argumento de z está deter-
minado por θ salvo múltiplos enteros de 2π,

arg z = θ + 2kπ, k = 0,±1,±2, . . . , (1.34)

i.e. es multievaluado y, por tanto, no es una función. Esto implica en particular que dos
números complejos no nulos z1 y z2 serán iguales si y solo si

|z1| = |z2| y arg z1 = arg z2 (mod2π) . (1.35)

3Aunque no la usaremos en este curso, es conveniente estar familiarizado con la notación alternativa z =
|z| cis θ ≡ |z|(cos θ + i sen θ) usada en algunos libros clásicos.
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La restricción del argumento de un número complejo a un intervalo semiabierto I de longi-
tud 2π se denomina determinación del argumento, denotándose comúnmente por argI . Al
contrario que arg, argI es univaluada y, por tanto, una función. La elección particular

Arg z ≡ arg(−π,π] z (1.36)

se conoce como determinación principal del argumento y es una función discontinua a lo
largo del semieje real negativo. Nótese que la aparición de dicha discontinuidad es inevitable.
En particular, si hubiéramos considerado una determinación alternativa del argumento en
el intervalo [0, 2π), nos encontraŕıamos con una discontinuidad en el eje real positivo. La
elección (−π, π] viene motivada por la extensión a los complejos de algunas funciones reales,
como el logaritmo o las ráıces, para las cuales será conveniente definir argumentos principales
que garanticen su continuidad en R+.

Ejemplo: −1 en forma polar y su argumento en diversos intervalos

−1 = 1 · (cos(π + 2πk) + i sen(π + 2πk)) ,

arg(−1) = π + 2πk, for k ∈ Z .

Eligiendo diversos intervalos tenemos por ejemplo,

arg[−π,π)(−1) = −π , arg[0,2π)(−1) = π , Arg(−1) = arg(−π,π](−1) = π .

1.6 Fórmulas de Euler y de De Moivre

Usando las expansiones de las funciones trigonométricas

cos θ =
∞∑
k=0

(−1)k θ2k

(2k)!
, sen θ =

∞∑
k=0

(−1)k θ2k+1

(2k + 1)!
, (1.37)

para calcular

cos θ + i sen θ =
∞∑
k=0

(−1)k︸ ︷︷ ︸
(i)2k

θ2k

(2k)!
+

∞∑
k=0

i(−1)k︸ ︷︷ ︸
(i)2k+1

θ2k+1

(2k + 1)!
=

∞∑
n=0

(iθ)n

n!
= eiθ , (1.38)

obtenemos la conocida como fórmula de Euler

eiθ = cos θ + i sen θ , (1.39)

con θ ∈ R. Nótese que esta expresión es consistente con el reemplazo formal i ↔ −i en la
conjugación compleja (1.19),

z = |z|eiθ −→ z = |z|e−iθ , (1.40)
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y de gran utilidad para realizar operaciones trigonométricas,

cos θ =
eiθ + e−iθ

2
, sen θ =

eiθ − e−iθ

2i
, (1.41)

y multiplicaciones y divisiones de número complejos, algo más complicadas de llevar a cabo
en la representación cartesiana. En particular, dados dos números complejos z1 = |z1|eiθ1 =
|z1| (cos θ1 + i sen θ1) y z2 = |z2|eiθ2 = |z2| (cos θ2 + i sen θ2) en representación polar, tenemos

z1z2 = |z1||z2|ei(θ1+θ2) ,
z1
z2

=
|z1|
|z2|

ei(θ1−θ2) . (1.42)

o alternativamente

z1z2 = |z1||z2| (cos θ1 + i sen θ1) (cos θ2 + i sen θ2)

= |z1||z2| (cos θ1 cos θ2 − sen θ1 sen θ2 + i (cos θ1 sen θ2 + sen θ1 cos θ2))

= |z1||z2| (cos (θ1 + θ2) + i sen (θ1 + θ2)) ,

(1.43)

lo cual es consistente con la primera propiedad en (1.25) y las reglas

arg (z1z2) = arg z1 + arg z2 (mod2π) ,

arg
(
z−1
)
= − arg z (mod2π) ,

arg(z) = − arg z (mod2π) ,

arg (z1/z2) = arg z1 − arg z2 (mod2π) .

(1.44)

La interpretación geométrica de la expresión (1.42) es evidente: el producto de dos números
complejos es geométricamente un giro (se suman los argumento) seguido de una homotecia
(se multiplican los módulos).

Además, la ecuación (1.39) nos permite obtener como caso particular la famosa identidad
de Euler

eiπ + 1 = 0 , (1.45)

una de las relaciones más bellas en matemáticas, involucrando simultáneamente la identidad
aditiva (0), la identidad multiplicativa (1), la constante del ćırculo fundamental (π), el número
e = 2.718 . . . y la unidad imaginaria i.

Otro resultado importante es la llamada fórmula de De Moivre

cos(nθ) + i sen(nθ) = (cos θ + i sen θ)n , (1.46)

con n ∈ Z. Esta expresión se obtiene por inducción de la fórmula de Euler (1.39). En
particular, asumiendo que la ecuación (cos θ + i sen θ)n = cos(nθ) + i sen(nθ) es válida para
algún entero positivo n, tenemos

(cos θ + i sen θ)n+1 = (cos θ + i sen θ)n(cos θ + i sen θ) = (cosnθ + i sennθ)(cos θ + i sen θ)

= (cosnθ cos θ − sennθ sen θ) + i(cosnθ sen θ + sennθ cos θ)

= cos(n+ 1)θ + i sen(n+ 1)θ .
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Para n negativo, consideramos m = −n y reutilizamos el resultado que acabamos de de-
mostrar para los números enteros positivos,

(cos θ + i sen θ)n =
1

(cos θ + i sen θ)m
=

1

cosmθ + im sen θ
· cosmθ − i senmθ
cosmθ − i senmθ

= cosnθ + i sennθ ,

completando la demostración para todos los enteros.

En términos geométricos, la fórmula de De Moivre refleja el hecho de que n rotaciones de
ángulo θ son equivalentes a una sola rotación de ángulo nθ,

(
cos θ − sen θ
sen θ cos θ

)n

=

(
cos(nθ) − sen(nθ)
sen(nθ) cos(nθ)

)
. (1.47)

Ejemplo: Cálculo de (−1 + i)20

Para calcular (−1 + i)20, expresamos (−1 + i) en forma polar

−1 + i =
√
2(cos(3π/4) + i sen(3π/4)) ,

y aplicamos la fórmula de De Moivre

(−1 + i)20 = 220/2(cos(20 · 3π/4) + i sen(20 · 3π/4)) = 1024(cosπ + i senπ) = −1024 .

Combinada con la fórmula binomial de Newton, válida también para los complejos,

(z1 + z2)
n =

n∑
k=0

(
n
k

)
zk1z

n−k
2 , (1.48)

la fórmula de De Moivre permite obtener fácilmente expresiones para los senos y cosenos de
los múltiplos de un ángulo.

Ejemplo: Cálculo de sen(5θ) como un polinomio en sen θ

Para expresar sen(5θ) como un polinomio en sen θ, aplicamos la fórmula de De Moivre

(cos(5θ) + i sen(5θ)) = (cos θ + i sen θ)5

= cos5 θ + 5i cos4 θ sen θ − 10 cos3 θ sen2 θ − 10i cos2 θ sen3 θ + 5 cos4 θ sen θ + i sen5 θ
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e igualamos partes reales e imaginarias

sen(5θ) = 5 cos4 θ sen θ − 10 cos2 θ sen3 θ + sen5 θ

= 5
(
1− sen2 θ

)2
sen θ − 10

(
1− sen2 θ

)
θ sen3 θ + sen5 θ

= 5 sen θ − 10 sen3 θ + 5 sen5 θ − 10 sen3 θ + 10 sen5 θ + sen5 θ

= 5 sen θ − 20 sen3 θ + 16 sen5 θ .

1.7 El Teorema Fundamental del Álgebra

Como probaremos en la Sección 2.8, el Teorema Fundamental del Álgebra establece que todo
polinomio con coeficientes complejos tiene por lo menos una ráız compleja. Consideremos la
ecuación polinómica

anz
n + an−1z

n−1 + . . .+ a1z + a0 = 0 (1.49)

con coeficientes complejos a0, . . . an. Dada una solución z de esta ecuación, z satisface

anz
n + an−1z

n−1 + . . .+ a1z + a0 = 0 . (1.50)

Esto demuestra que las ráıces no reales de una ecuación polinómica con coeficientes reales
se presentan en pares conjugados complejos. Denotando las ráıces de (1.49) como z1, . . . zn
podemos escribir dicha expresión en la llamada forma factorizada

an (z − z1) (z − z2) . . . (z − zn) = 0 . (1.51)

1.7.1 Ráıces cuadradas

La ráız cuadrada z = x+iy =
√
z0 de cualquier número complejo z0 = x0+iy0 debe satisfacer

(x+ iy)2 = z0 ←→ x2 − y2 = x0 , 2xy = y0 . (1.52)

Combinando las dos ecuaciones obtenemos

x20 + y20 =
(
x2 − y2

)2
+ 4x2y2 =

(
x2 + y2

)2
, (1.53)

A partir de la primera ecuación en el sistema, tenemos

x2 =
1

2

(
x0 +

√
x20 + y20

)
, y2 =

1

2

(
−x0 +

√
x20 + y20

)
. (1.54)

Los signos de x y y al tomar la ráız cuadrada de las expresiones anteriores vienen determinados
por la segunda ecuación en el sistema, 2xy = y0. En concreto tenemos

z = x+ iy =
√
x0 + iy0 = ±

√x0 +
√
x20 + y20
2

+ i
y0
|y0|

√
−x0 +

√
x20 + y20

2

 , y0 ̸= 0 .

(1.55)
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La ráız cuadrada de cualquier número complejo tiene, por tanto, dos valores opuestos, que
coinciden solo śı x0 + iy0 = 0. Nótese que el caso y0 = 0 se corresponde con las ráıces
cuadradas de números reales. En concreto, tenemos

z = ±
√
x0 si x0 ≥ 0, z = ±i

√
−x0 si x0 < 0, y0 = 0 . (1.56)

Estos resultados nos permiten resolver ecuaciones cuadráticas del tipo

az2 + bz + c = 0 , (1.57)

con coeficientes a, b, c ∈ C y a ̸= 0. De hecho, completando cuadrados, tenemos

a

(
z +

b

2a

)2

− 1

4a

(
b2 − 4ac

)
= 0 , (1.58)

y

z =
1

2a

(
−b±

√
b2 − 4ac

)
= 0 . (1.59)

1.7.2 Ráıces n-ésimas

Las ráıces n-ésimas de un número complejo conocido z0 son las soluciones de la ecuación
polinómica

zn = z0 , (1.60)

con n un número natural, n ⩾ 2. Escribiendo z y z0 en forma polar,

z = |z|eiθ , z0 = |z0|eiθ0 , (1.61)

y usando la fórmula de De Moivre, podemos escribir (1.60) en la forma

zn = |z|neinθ = |z0|eiθ0 . (1.62)

Aplicando ahora el criterio de igualdad de números complejos en forma polar

|z|n = |z0| , θk =
θ0 + 2kπ

n
=
θ0
n

+
2kπ

n
, k = 0,±1,±2, . . . (1.63)

deducimos que

zk = n
√
|z0| exp

[
i

(
θ0
n

+
2kπ

n

)]
. (1.64)

De acuerdo con esta expresión, existen n ráıces diferentes de z, contenidas todas ellas en
un ćırculo de radio |z| = n

√
|z0| centrado en el origen y separadas por múltiplos de 2π/n

(k = 0, 1, 2, . . . , n− 1). Nótese en particular que podemos reescribir la expresión (1.64) como

zk = n
√
|z0| exp

(
i
θ0
n

)
ωk
n , (1.65)
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con

ωk
n = exp

(
i
2kπ

n

)
(1.66)

una rotación en sentido antihorario de 2π/n radianes. Las ráıces n-esimas forman, por tanto,
un poĺıgono regular de n lados. En concreto, las ráıces n-ésimas de la unidad (z = 1) son los
números (1.66).

La ráız n-esima asociada a la determinación principal del argumento,

n
√
z = n

√
|z0|

(
cos

Arg z

n
+ i sen

Arg z

n

)
(1.67)

se denomina ráız n-ésima principal. Como anticipamos, nuestra elección del argumento prin-
cipal (1.36) garantiza que la ráız principal de z como número complejo coincida con la ráız
de z ∈ R+.

Ejemplo: Cálculo de las ráıces cúbicas de −27

Para calcular las ráıces cúbicas de −27, podemos utilizar dos métodos:

• Método 1. Las ráıces cúbicas de −27 son las soluciones de la ecuación polinómica
z3 + 27 = 0, la cual admite una factorización

(z + 3)(z2 − 3z + 9) = 0 .

El primer factor da la solución −3. Las ráıces del segundo factor nos dan las
otras dos soluciones,

3

2

(
1± i

√
3
)

• Método 2. Escribiendo −27 en forma polar,

−27 = 27eiπ ,

la ecuación polinómica z3 + 27 = 0 toma la forma

|z|3ei 3θ = 27eiπ .

Identificando módulo y argumentos a ambos lados y resolviendo el sistema de
ecuaciones resultante,

|z|3 = 27 , 3θ = π + 2πk ,

obtenemos

|z| = 3 , θ =
π

3
+

2πk

3
←→ 3

√
−27 = 3ei(π/3+2πk/3) ,
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con k = 0, 1, 2 (añadir otros múltiplos de 2π da el mismo número complejo). Para
estos valores de k, recuperamos los resultados obtenidos con el primer método,

3

2

(
1 + i

√
3
)
, 3 ,

3

2

(
1− i

√
3
)
.

Estas ráıces están igualmente espaciadas a lo largo de un ćırculo centrado en el origen
y de radio |z| = 3.

Nótese que el producto de ráıces n-ésimas principales de números complejos no es necesaria-
mente igual a la ráız principal n-ésima del producto de números complejos. De hecho, dadas
las ráıces de dos números complejos z1 y z2 tenemos,

n
√
|z1| n

√
|z2| = n

√
|z1z2| ,

Arg z1
n

+
Arg z2
n

=
Arg z1z2

n
+ 2kπ , (1.68)

o más expĺıcitamente Arg z1 + Arg z2 = Arg z1z2 + 2knπ. Como n ⩾ 2 y −2π < Arg z1 +
Arg z2 ⩽ 2π, necesariamente debemos tener k = 0, pues, en otro caso, |2knπ| ⩾ 4π y no
puede darse la igualdad. Concluimos, por tanto, que n

√
z1 n
√
z2 = n

√
z2z2 si y solo si

−π < Arg z1 +Arg z2 ⩽ π . (1.69)

Por ejemplo, si las partes reales de z1 y z2 son positivas y, por tanto, ambos números complejos
están en el semiplano derecho, tenemos −π/2 < Arg z1 < π/2 y −π/2 < Arg z2 < π/2; y, por
tanto, Arg z1+Arg z2 = Arg(z1z2) por lo que, en este caso, si se cumple qué n

√
z1 n
√
z2 = n

√
z1z2.

Por el contrario, en el caso n = 2, z1 = z2 = −1, tenemos

Arg(−1) + Arg(−1) = 2π ̸= 0 = Arg(1) = Arg((−1)(−1)) ,

y, por tanto, no se cumple la condición (1.69). En este caso, como anticipamos,
√
−1
√
−1 = −1 ̸= 1 =

√
1 =

√
(−1)(−1) ,

es decir,
√
−1
√
−1 = −1 es una ráız cuadrada de 1 = (−1)(−1) pero no es la ráız cuadrada

principal de 1.

1.8 Topoloǵıa del plano complejo

Como el conjunto C no es otra cosa que R2, definir una topoloǵıa en C es equivalente a
hacerlo en R2. En concreto, si z0 es un número complejo y r > 0, podemos definir:

1. Disco abierto, entorno o vecindad con centro en z0 y radio r:

D(z0, r) = {z ∈ C : |z − z0| < r} . (1.70)

El disco abierto no incluye su frontera, indicada en la figura con una ĺınea punteada.
Nótese que un disco abierto no puede ser vaćıo. Por convenio, D(z0,+∞) = C.
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2. Disco abierto punteado o entorno reducido con centro en z0 y radio r:

D′(z0, r) = {z ∈ C : 0 < |z − z0| < r} . (1.71)

3. Disco cerrado con centro en z0 y radio r:

D(z0, r) = {z ∈ C : |z − z0| ≤ r} (1.72)

El disco cerrado incluye su frontera, indicada en la figura con una ĺınea sólida. Nótese
qué D(z0, 0) = {z0}.

4. Conjunto abierto: Un conjunto U ⊆ C es abierto si cada punto z0 del conjunto está
rodeado por puntos vecinos que también están en el conjunto, o más formalmente si

∀z0 ∈ U, ∃ r > 0 : D(z0, r) ⊆ U . (1.73)

Por ejemplo, {z ∈ C : Re z > 1} es abierto, pero {z ∈ C : Re z ≤ 1} no lo es.

5. Conjunto cerrado: Un conjunto E ⊆ C es cerrado si el complemento de E en C
(C\E ≡ {z ∈ C : z /∈ E}) es un conjunto abierto. Por ejemplo, el conjunto F = {z ∈
C : Re z ≤ 1} es cerrado.4

6. Conjunto conexo: Un conjunto E ⊂ C es conexo si no puede ser dividido en conjuntos
abiertos disjuntos no vaćıos U y V , es decir, si no existen dos partes U y V tales que
U ∩ E ̸= ∅, V ∩ E ̸= ∅, y E = (U ∩ E) ∪ (V ∩ E).

Si E es un conjunto abierto, entonces E es conexo si y solo si es conexo por trayectoria;
es decir, si cualquier par de puntos en E puede conectarse por una trayectoria o curva
continua que se encuentra completamente dentro del conjunto.

7. Conjunto simplemente conexo: Un conjunto E ⊆ C es simplemente conexo si su
frontera ∂D es un conjunto conexo (en caso contrario, lo llamaremos múltiplemente
conexo). Intuitivamente, un dominio simplemente conexo es un conjunto abierto for-
mado por una sola pieza y sin agujeros. Por ejemplo, C y un disco abierto D (z0, r)
son dominios simplemente conexos. Por el contrario, un disco punteado es conexo, pero
no es simplemente conexo.

8. Dominio o región: Un dominio o región es un conjunto abierto y conexo.

Ejemplo: Descripción de Im(z−1) > 1

Para z = x+ iy ̸= 0 y usando la expresión (1.28) podemos escribir

z−1 =
z̄

|z|2
=

x− iy
x2 + y2

,

4Nótese que no todo conjunto es abierto o cerrado. Por ejemplo, W = {z ∈ C : 1 < Re z ≤ 2} no es ni
abierto ni cerrado.
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y, por tanto,

Im(z−1) > 1 −→ −y
x2 + y2

> 1 −→ x2 + y2 + y < 0 .

Completando cuadrados,

x2 +

(
y2 + y +

1

4

)
<

1

4
−→ x2 +

(
y +

1

2

)2

<

(
1

2

)2

,

podemos identificar la región Im(z−1) > 1 como el interior de un disco abierto con
centro z0 = −i/2 y radio 1/2.

1.9 Funciones

La definición de una función en un dominio D ⊆ C es equivalente a establecer una regla
asociando a cada punto z ∈ D un único número complejo,

f : D −→ C, w = f(z) , (1.74)

con w el valor de f en z. De acuerdo con esta definición, una función es única o monódromica,
es decir, tiene un solo valor. Separando la parte real e imaginaria en f y su argumento z,
tenemos, por tanto,

f(z) = u(x, y) + iv(x, y), f̄(z) = u(x, y)− iv(x, y) , (1.75)

o
f(|z|, θ) = u(|z|, θ) + iv(|z|, θ), f̄(z) = u(|z|, θ)− iv(|z|, θ) , (1.76)

con u, v funciones reales de las variables reales x e y o |z| y θ.

Ejemplo: Partes reales e imaginarias de f(z) = z2

Para f(z) = z2 tenemos

f(x+ iy) = (x+ iy)2 = x2 − y2 + 2iyx ,

y, por tanto,
u(x, y) = x2 − y2 , v(x, y) = 2xy .

Alternativamente, en forma polar, tenemos

f(|z|eiθ) = |z|2e2iθ = |z|2 (cos(2θ) + i sen(2θ))

y, por tanto,

u(|z|, θ) = |z|2 cos(2θ) , v(|z|, θ) = |z|2 sin(2θ) .
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1.10 Ĺımite funcional y continuidad

Los conceptos de ĺımite y continuidad para funciones complejas se siguen de los correspon-
dientes para las transformaciones de R2 a R2, permitiendo extender automáticamente los
teoremas elementales sobre ĺımites y continuidad al caso complejo. En particular, el ĺımite

lim
z→z0

f(z) = w0 , w0 ∈ C (1.77)

de una función de variable compleja w = f(z) definida en un disco punteado alrededor de z0
se corresponde con la existencia de un número positivo δ > 0 tal que 0 < |z − z0| < δ para
cada entorno |f(z)−w0| < ϵ de w0. Dada la analoǵıa formal entre esta definición y las corre-
spondientes para funciones reales de variable real, las reglas de cálculo de ĺımites conocidas
siguen siendo válidas para funciones de variable compleja, con las mismas demostraciones.
En particular, si los ĺımites limz→z0 f(z) y limz→z0 g(z) existen:

1. El ĺımite es único.

2. Las partes real e imaginaria del ĺımite de una función coinciden con los ĺımites de las
partes real e imaginaria de la función.

lim
x+iy→z0

u(x, y) = Rew0 , lim
x+iy→z0

v(x, y) = Imw0 . (1.78)

3. El ĺımite de la suma es la suma de los ĺımites,

lim
z→z0

[f(z) + g(z)] = lim
z→z0

f(z) + lim
z→z0

g(z) . (1.79)

4. El ĺımite del producto es el producto de los ĺımites,

lim
z→z0

[f(z)g(z)] = lim
z→z0

f(z) · lim
z→z0

g(z) . (1.80)

5. Si limz→z0 f(z) ̸= 0, el ĺımite de 1/f(z) es

lim
z→z0

1/f(z) = 1/ lim
z→z0

f(z), . (1.81)

Una función compleja f(z) es continua en z0 si y solo si limz→z0 f(z) = f (z0). De manera
similar, una función compleja f(z) es continua en U ⊂ C si y solo si f es continua en todos
los puntos de U . Al igual que con el ĺımite, las propiedades de continuidad conocidas para
funciones de una variable real son también válidas para funciones de variable compleja. En
particular, dadas dos funciones f y g continuas en z0, su suma, producto y composición son
continuos en z0. Además, su cociente es continuo para g(z0) ̸= 0.
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Ejemplo: limz→∞
4+z2

(z−1)2

lim
z→∞

4 + z2

(z − 1)2
= lim

z→0

4 + z−2

(z−1 − 1)2
= lim

z→0

4z2 + 1

(1− z)2
=

limz→0

(
4z2 + 1

)
limz→0(1− z)2

=
4 (limz→0 z)

2 + limz→0 1

(limz→0 1− limz→0 z)
2 = 1

1.11 Diferenciabilidad y holomorfismos

Dada una función f(x, y) definida en un abierto en R2, se dice que f es diferenciable en un
punto (x0, y0) ∈ U si existe una forma lineal del tipo αh+ βk tal que

f(x0 + h, y0 + k)− f(x0, y0) = αh+ βk +Ω(h, k)
√
h2 + k2, (1.82)

con α y β en el mismo conjunto de valores asumidos por la función f en las variables h y k y

Ω(h, k)→ 0 , para h, k → 0 . (1.83)

En otras palabras, dichas funciones son diferenciables si la diferencia entre el incremento
f(x0+h, y0+k)−f(x0, y0) y la expresión lineal αh+βk es un infinitesimal de orden superior
a
√
h2 + k2 cuando h y k tienden a cero.

Si f es diferenciable en el punto (x0, y0), las cantidades α y β en (1.82) están determinadas
de manera única y coinciden con las derivadas parciales,

α =
∂f

∂x
(x0, y0) , β =

∂f

∂y
(x0, y0) . (1.84)

Nótese, sin embargo, que la mera existencia de derivadas parciales en (x0, y0) indica únicamente
la diferenciabilidad a lo largo de los ejes coordenados k = 0 o h = 0. Para que f sea diferen-
ciable en ese punto, se requieren condiciones adicionales como la existencia de las derivadas
parciales en un entorno del punto y que estas sean continuas en el punto (x0, y0).

Aunque la condición de diferenciabilidad (1.82) es perfectamente válida para funciones
complejas de una variable compleja, estaremos principalmente interesados en aquellas fun-
ciones diferenciables en las que expresión lineal αh + βk aparece únicamente en la forma
w = h + ik. Para dichas funciones, la diferenciabilidad de f está ı́ntimamente relacionada
con la condición de holomorfismo en un punto z0 ∈ U ,

∃γ ∈ C :
f(z0 + w)− f(z0)

w
= γ +

|w|
w

Ω(w), con Ω(w)→ 0 con w → 0 . (1.85)

Esta definición puede extenderse a todo un subconjunto del plano complejo. En particular,
diremos que f es holomorfa en un subconjunto U de C si es holomorfa en cada punto z ∈ U .
Algunos libros utilizan los términos “anaĺıtica”, “diferenciable” o “diferenciable en el plano
complejo” en lugar de “holomorfa”. El uso del término anaĺıtica deriva del hecho de que
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una función holomorfa admite una expansión local en serie de potencias en cada punto de su
dominio. Las funciones holomorfas en todo el plano complejo se llaman funciones enteras.

Si tomamos z0 = x0+iy0 y w = h+ik y comparamos las relaciones (1.82) y (1.85), la condición
de holomorfismo en un punto implica de hecho la diferenciabilidad de f como función de las
variables reales x e y, con la condición adicional de qué α y β dependan únicamente de γ,

α =
∂f

∂x
= γ , β =

∂f

∂y
= iγ , α+ iβ = γ + i2γ = 0 , (1.86)

o alternativamente

∂f

∂x
+ i

∂f

∂y
= 0 . (1.87)

Puesto que el cociente |w|/w en (1.85) es un número complejo con módulo unitario, la
condición de holomorfismo es también equivalente a la existencia del ĺımite del cociente in-
cremental en el punto z0,

5

γ = lim
w→0

f(z0 + w)− f(z0)
w

= f ′(z0) =
df

dz
(z0) , (1.88)

con f ′(z0) la derivada de f en z0. De esta condición se sigue fácilmente que si una función
f : C→ C es diferenciable en z0, entonces es continua en z0,

lim
z→z0

[f(z)− f (z0)] = lim
z→z0

[
f(z)− f (z0)

z − z0
(z − z0)

]
= lim

z→z0

f(z)− f (z0)
z − z0

lim
z→z0

(z − z0) = f ′ (z0) · 0 = 0 .

(1.89)

Las operaciones aritméticas elementales respetan la propiedad de holomorfismo. En particu-
lar, si dos funciones f(z) y g(z) son holomorfas en un punto z0, entonces su suma f(z)+g(z),
su diferencia f(z)− g(z), su producto f(z) · g(z) y su cociente f(z)/g(z) para g (z0) ̸= 0 son
también funciones holomorfas en z0, y, por tanto, derivables.

(f ± g)′(z0) = f ′(z0)± g′(z0) , (1.90)

(fg)′(z0) = f ′(z0)g(z0) + f(z0)g
′(z0) , (1.91)(

f

g

)′
(z0) =

f ′(z0)g(z0)− f(z0)g′(z0)
g(z0)2

, g (z0) ̸= 0 . (1.92)

En concreto, los polinomios

p(z) = c0 + c1z + c2z
2 + · · ·+ cnz

n (1.93)

con ck ∈ C para 0 ⩽ k ⩽ n y las funciones racionales

r(z) =
p(z)

q(z)
, (1.94)

5Dicho ĺımite es, de hecho, un ĺımite doble, donde tanto la parte real como la parte imaginaria de w deben
tender a cero.
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con p(z) y q(z) funciones polinómicas, son diferenciables en cada punto de su dominio,
pudiéndose calcular sus derivadas con las mismas reglas que se aplican a la derivada real,
incluida la regla de la cadena,

Ejemplo: Monomios como funciones holomorfas

Para un monomio arbitrario zn = (x+ iy)n, tenemos por ejemplo

(z + w)n − zn

w
=

(
n

1

)
zn−1 +

n∑
k=2

(
n

k

)
(w)k−1zn−k −→

w→0
nzn−1 .

Por otro lado, es fácil verificar que dicha función satisface las condiciones de Cauchy-
Riemann,

∂ (zn)

∂x
= n(x+ iy)n−1 ,

∂ (zn)

∂y
= in(x+ iy)n−1,

∂ (zn)

∂x
+ i

∂ (zn)

∂y
= n(x+ iy)n−1

(
1 + i2

)
= 0 .

1.11.1 Condiciones de holomorfismo: las ecuaciones de Cauchy-Riemann

Separando la parte real e imaginaria en la última expresión en (1.86),

f(z) = u(x, y) + iv(x, y) , z = x+ iy , (1.95)

obtenemos las llamadas condiciones de holomorfismo de Cauchy-Riemann,

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (1.96)

Este resultado pone de manifiesto que la mera elección y combinación de dos “buenas” fun-
ciones de variable real u, v, no garantiza que la función f(z) sea derivable en el sentido
complejo, ya que dichas funciones reales no tienen por qué verificar las ecuaciones de Cauchy-
Riemann.

Como subproducto de estas relaciones tenemos también que para funciones holomorfas

df

dz
=
∂f

∂x
. (1.97)

Ejemplo: Una función holomorfa

Para una función

f(z) = z2 − z = (x+ iy)2 − (x+ iy) = (x2 − y2 − x) + i(2xy − y) ≡ u(x, y) + iv(x, y).
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independiente de z, las ecuaciones de Cauchy-Riemann se satisfacen expĺıcitamente

∂u

∂x
= 2x− 1 =

∂v

∂y
, ,

∂v

∂x
= 2y = −∂u

∂y
.

La función f(z) es, por tanto, holomorfa.

Ejemplo: Una función no holomorfa

Para una función

g(z) = |z|2 − 4z + 2z = zz − 4z + 2z = (x2 + y2 − 2x) + i(−6y) ≡ u(x, y) + iv(x, y) ,

dependiente de z como de z, las condiciones de Cauchy-Riemann no se cumplen

∂u

∂x
= 2x− 2 ̸= −6 =

∂v

∂y
,

∂v

∂x
= 0 ̸= −2y = −∂u

∂y
.

La función g(z) es, por tanto, no holomorfa.

Ejemplo: Ecuaciones de Cauchy-Riemann y f́ısica de fluidos

Para ilustrar la relación de las ecuaciones de Cauchy con problemas de relevancia en
f́ısica, consideremos el campo de velocidad de un fluido en 2 dimensiones,

V⃗ = V⃗ (x, y) .

En ausencia de fuentes, sumideros o vórtices, el movimiento del fluido es solenoidal e
irrotacional, es decir, el campo de velocidades tiene divergencia y rotacional nulos,

∇ · V⃗ =
∂Vx
∂x

+
∂Vy
∂y

= 0 , ∇× V⃗ =
∂Vx
∂y
− ∂Vy

∂x
= 0 .

Identificando
u(x, y) = Vx(x, y) , v(x, y) = −Vy(x, y) ,

estas propiedades son equivalentes a las condiciones de Cauchy-Riemann en (1.96). En
otras palabras, el movimiento solenoidal e irrotacional de un fluido puede describirse
en términos de una función holomorfa f(z) = u(x, y) + iv(x, y) con z = x+ iy.

Reescribiendo las relaciones de Cauchy-Riemann en términos de las variables z = x+ iy
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y z = x− iy mediante la regla de la cadena y las relaciones

x =
1

2
(z + z̄) , y =

1

2i
(z − z̄) , (1.98)

obtenemos

∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
=

1

2

(
∂u

∂x
+
∂v

∂y

)
+
i

2

(
∂v

∂x
− ∂u

∂y

)
, (1.99)

∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
=

1

2

(
∂u

∂x
− ∂v

∂y

)
+
i

2

(
∂v

∂x
+
∂u

∂y

)
. (1.100)

Teniendo en cuenta (1.87) y (1.96), esto implica

∂f

∂z
=
∂f

∂x
,

∂f

∂z
= 0 . (1.101)

Una función holomorfa no puede, por tanto, depender expĺıcitamente de z! En otras palabras,
las funciones complejas derivables son “auténticas funciones complejas,” en el sentido de que
si la función u(x, y) + iv(x, y) es derivable, la expresión que se obtiene al realizar el cambio
(1.98) en u(x, y) + iv(x, y),

f(z) = u

(
z + z̄

2
,
z − z̄
2i

)
+ iv

(
z + z̄

2
,
z − z̄
2i

)
, (1.102)

depende únicamente de la variable z. Nótese también que

∂

∂z
z = 1 ,

∂

∂z
z = 0 ,

∂

∂z
z = 0 ,

∂

∂z
z = 1 . (1.103)

Ejemplo: Revisión de los ejemplos anteriores

Es ilustrativo examinar los dos ejemplos anteriores con este nuevo criterio:

∂

∂z
f(z) =

∂

∂z

(
z2 − z

)
= 2z

∂z

∂z
− ∂z

∂z
= 0− 0 = 0.

La función f es holomorfa.

∂

∂z
g(z) =

∂

∂z

(
|z|2 − 4z + 2z

)
=

∂

∂z
(z · z − 4z + 2z) = z + 2 ̸= 0.

La función g no es holomorfa.

1.11.2 Relación entre funciones holomorfas y armónicas

La derivada de una función homomorfa es también homomorfa, implicando la existencia de
segundas derivadas parciales para su parte real e imaginaria. Es fácil ver que si una función

f(z) = u(x, y) + iv(x, y) , z = x+ iy , (1.104)
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es holomorfa, tanto u como v son funciones armónicas,

(
∂2

∂x2
+

∂2

∂y2

)
u = 0 ,

(
∂2

∂x2
+

∂2

∂y2

)
v = 0 . (1.105)

En particular, basta multiplicar la condición (1.101) por ∂/∂z,

∂

∂z

∂

∂z
f =

(
1

2

[
∂

∂x
− i ∂

∂y

])(
1

2

[
∂

∂x
+ i

∂

∂y

])
[u+ iv] = 0 , (1.106)

multiplicar por 4 y desarrollar las derivadas,(
∂2

∂x2
+

∂2

∂y2

)
[u+ iv] =

(
∂2

∂x2
+

∂2

∂y2

)
u+ i

(
∂2

∂x2
+

∂2

∂y2

)
v = 0 . (1.107)

Viceversa, dada una función real de dos variables reales que sea armónica, es siempre posible
encontrar una función holomorfa de la cual esta sea la parte real o imaginaria. Dicha función
está determinada salvo una constante. En particular, si u(x, y) = Re f(z), la parte imaginaria
debeŕıa cumplir

∂v

∂y
=
∂u

∂x
, −→ v(x, y) =

∫ y

y0

∂u(x, t)

∂x
dt+ h(x) , (1.108)

Derivando con respecto a x, teniendo en cuenta (1.105), e imponiendo ∂u/∂y = −∂v/∂x,

∂v(x, y)

∂x
=

∫ y

y0

∂2u(x, t)

∂x2
dt+ h′(x) = −

∫ y

y0

∂2u(x, t)

∂y2
dt+ h′(x)

= −∂u(x, y)
∂y

+
∂u (x, y0)

∂y
+ h′(x) = −∂u(x, y)

∂y
,

(1.109)

obtenemos

h′(x) = −∂u (x, y0)
∂y

, −→ h(x) = −
∫ x

x0

∂u (t, y0)

∂y
dt+ c (c ∈ R) (1.110)

y por tanto

v(x, y) =

∫ y

y0

∂u(x, t)

∂x
dt−

∫ x

x0

∂u (t, y0)

∂y
dt+ c . (1.111)

Por construcción la función f = u+ iv cumple las ecuaciones de Cauchy-Riemann.

1.12 Funciones elementales

Las funciones elementales de variable compleja son extensiones de las correspondientes fun-
ciones de variable real. Para definir dichas funciones, recurriremos a la expansión en serie de
potencias de las funciones reales, sustituyendo la variable real por una variable compleja y
demostrando que la expansión formal obtenida converge en un dominio apropiado, como un
disco en el plano complejo o la totalidad del mismo.
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1.12.1 Exponenciales

Consideremos por ejemplo la expansión en serie de la función exponencial y su extensión al
caso complejo

ex =
∞∑
n=0

xn

n!
, x ∈ R −→ ez =

∞∑
n=0

zn

n!
, z ∈ C , (1.112)

con
n! = n · (n− 1) · (n− 2) · · · 3 · 2 · 1 (1.113)

la operación de factorización usual. La serie resultante será convergente si la sucesión de las
sumas parciales

SN (z) =

N∑
n=0

zn

n!
(1.114)

da lugar a una secuencia de puntos en el plano complejo que converge a un punto definido
como ez. Asumiendo N > M y teniendo en cuenta la generalización de la desigualdad
triangular en (1.25), ∣∣∣∣∣∣

n∑
j=1

zj

∣∣∣∣∣∣ ≤
n∑

j=1

|zj | , (1.115)

tenemos

|SN − SM | =

∣∣∣∣∣
N∑

n=M+1

zn

n!

∣∣∣∣∣ ⩽
N∑

n=M+1

|z|n

n!
−→

N,M→∞
0 , (1.116)

puesto que la serie (en R)

e|z| =

∞∑
n=0

|z|n

n!
(1.117)

es convergente para todo |z|. Dado que el criterio de Cauchy es necesario y suficiente en R2,
y, por tanto, en C), la serie exponencial

ez =
∞∑
n=0

zn

n!
, z ∈ C (1.118)

converge para cualquier z. Definida de esta forma, la exponencial compleja satisface todas
las propiedades de la exponencial real. En concreto, para z, z1, z2 ∈ C se tiene

ez ̸= 0 ,∀z , ez1+z2 = ez1ez2 , ez1−z2 =
ez1

ez2
, 1/ez = e−z . (1.119)

Otras propiedades importantes se siguen inmediatamente de la descomposición de la expo-
nencial en sus partes reales e imaginarias,6

ez = ex+iy = exeiy = ex(cos y + i sen y) . (1.120)

6En algunos textos, esta expresión constituye la definición de la exponencial compleja.
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En concreto, tenemos

e0 = 1, eπi/2 = i, eπi = −1, e3πi/2 = −i e2πi = 1 ,

|ez| = eRe z = ex, arg (ez) = Im z (mod2π) , ez = ez .
(1.121)

Además, la función exponencial es periódica con peŕıodo imaginario puro 2πi,

ez+2ikπ = eze2ikπ = ez , (1.122)

puesto que para k ∈ Z, e2ikπ = 1.

1.12.2 Funciones trigonométricas

De manera similar, el seno y el coseno de un número complejo vienen definidos por las series
convergentes

sen z =
∞∑
n=0

(−1)n z2n+1

(2n+ 1)!
, cos z =

∞∑
n=0

(−1)n z2n

(2n)!
, (1.123)

cuya manipulación algebraica,

cos z + i sen z =
∞∑
n=0

(−1)n z2n

(2n)!
+ i

∞∑
n=0

(−1)n z2n+1

(2n+ 1)!
=

∞∑
k=0

(iz)k

k!
= eiz , (1.124)

permite generalizar la fórmula de Euler,

eiz = cos z + i sen z . (1.125)

Puesto que las funciones coseno y seno en esta expresión están definidas por potencias pares
e impares respectivamente, tenemos que dichas funciones son par e impar bajo el cambio
z → −z,

cos(−z) = cos(z) , sen(−z) = − sen(z) , (1.126)

y, por tanto,
e−iz = cos(−z) + i sen(−z) = cos z − i sen z . (1.127)

Combinando (1.125) y (1.127), podemos expresar el seno y el coseno en términos de funciones
exponenciales complejas

sen z =
eiz − e−iz

2i
, cos z =

eiz + e−iz

2
, (1.128)

y verificar las expresiones

cos(z1 + z2) = cos z1 cos z2 − sen z1 sen z2, (1.129)

sen(z1 + z2) = sen z1 cos z2 + cos z1 sen z2 , (1.130)
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para z1, z2 ∈ C y la relación fundamental de la trigonometŕıa,

sen2 z + cos2 z = 1 , (1.131)

con todas las implicaciones algebraicas que eso conlleva. Además, debido a la última propiedad
en (1.121), se tiene sen z = sen z̄ y cos z = cos z̄.

Del mismo modo, se pueden extender al caso complejo todas las demás funciones trigonométricas
como la tangente,

tan z =
sen z

cos z
, (cos z ̸= 0) , (1.132)

la cotangente,

cot z =
cos z

sen z
=

1

tan z
, (sen z ̸= 0) (1.133)

la secante,

sec z =
1

cos z
, (cos z ̸= 0) , (1.134)

y la cosecante

csc z =
1

sen z
, (sen z ̸= 0) . (1.135)

Nótese que

sen z = 0 −→ eiz − e−iz = 0 −→ e2iz = 1 −→ z = kπ (k ∈ Z) , (1.136)

y, analogamente.

cos z = 0 −→ z =
π

2
+ kπ (k ∈ Z) . (1.137)

1.12.3 Funciones hiperbólicas

Las funciones hiperbólicas también pueden extenderse al plano complejo mediante una ex-
tensión de su desarrollo en series convergentes,

senh z =
∞∑
n=0

z2n+1

(2n+ 1)!
, cosh z =

∞∑
n=0

z2n

(2n)!
, (1.138)

o de manera más simple a través de las relaciones

cosh z =
ez + e−z

2
, senh z =

ez − e−z

2
, (1.139)

de las cuales se sigue inmediatamente la relación fundamental

cosh2 z − senh2 z = 1 (1.140)

y las relaciones
senh(iz) = i sen z , sen(iz) = i senh z ,

cosh(iz) = cos z , cos(iz) = cosh z ,
(1.141)
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con las funciones trigonométricas. Tenemos, por ejemplo,

senh(iz) =
∞∑
n=0

(iz)2n+1

(2n+ 1)!
= i

∞∑
n=0

(−1)n z2n

(2n+ 1)!
= i sen z . (1.142)

Tomando z = x+ iy se sigue también que

sen z = senx cosh y + i cosx senh y , senh z = senhx cos y + i coshx sen y ,

cos z = cosx cosh y − i senx senh y , cosh z = coshx cos y + i senhx sen y .
(1.143)

Nótese que aunque que las funciones seno y coseno en estas expresiones conservan su periodici-
dad caracteŕıstica a lo largo de la dirección del eje real (f(z) = f(z+2πk), k entero), divergen
exponencialmente en la dirección del eje imaginario (y → ∞). Por otro lado, las funciones
hiperbólicas correspondientes, muestran periodicidad a lo largo de la dirección imaginaria
(f(z) = f(z + i2πn), n entero) y divergen exponencialmente en la dirección real (x → ∞).
Ninguna de estas funciones es, por tanto, acotada.

Las demás funciones hiperbólicas se definen análogamente al caso trigonométrico. Por
ejemplo, tenemos

tanh z ≡ senh z

cosh z
= −i tan(iz) (cosh z ̸= 0) . (1.144)

1.12.4 Logaritmos

La determinación de funciones inversas de la exponencial y las funciones trigonométricas e
hiperbólicas requiere precauciones especiales debido a sus propiedades de periodicidad. Por
ejemplo, a diferencia de lo que ocurre en la exponencial real, la exponencial compleja toma
el mismo valor para un número infinito de números complejos,

ez+2πki = ez, k ∈ Z . (1.145)

Con esto en mente, definimos el logaritmo de un número complejo no nulo z como todos los
números complejos w tales que ew = z. Las soluciones a esta ecuación vienen dadas por

log z = Log |z|+ i arg z, (1.146)

con Log el logaritmo real.

Ejemplo: Determinación de w = x+ iy en ew = 1 + i

Para determinar el número complejo w = x + iy tal que ew = 1 + i, expresamos el
número complejo z = 1 + i en coordenadas polares, obteniendo

ex+iy = ex(cos y + i sen y) =
√
2(cos(π/4) + i sen(π/4)) .

Comparando módulos y argumentos, tenemos

x = Log
√
2 , y = π/4 + 2πk, para k = 0,±1,±2, . . .
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y, por tanto,
log(1 + i) = Log

√
2 + i(π/4 + 2πk) ,

con k ∈ Z.

Nótese que, aunque Log es una función, log es multievaluada debido a arg. La determi-
nación del logaritmo se sigue de la determinación del argumento,

logI z = Log |z|+ i argI z . (1.147)

Definido de esta manera logI z es uni valuado. El precio a pagar por esto es que logI z no es
continuo a lo largo del eje negativo real. Nótese además que

La determinación principal del logaritmo se corresponde de nuevo con una elección de
intervalo (−π, π]. Puesto que el argumento principal de los números reales es 0, la determi-
nación principal del logaritmo de un número real coincide con su logaritmo real. Esto nos
permite escribir

Log z = log(−π,π] z = Log |z|+ iArg z . (1.148)

1.12.5 Potencias

La función potencia compleja se puede definir a través función de logaritmo complejo,

zw = ew log z , (1.149)

adquiriendo también sus ambigüedades. Nótese que, en general, si z ̸= 0, zw1+w2 ̸= zw1zw2 .

Ejemplo: Cálculo de 2i

2i = exp(i log 2) = exp(i(Log 2 + i2πk))

= exp(−2πk + iLog 2) = e−2πk(cos(Log 2) + i sen(Log 2))
,

con k entero.

La función de potencia compleja nos proporciona una alternativa a la factorización y
fórmula de De Moivre para el cálculo de ráıces n-ésimas de números complejos.

Ejemplo: Ráıces cúbicas de 2i

Para calcular las ráıces cúbicas 2i podemos escribir

(2i)1/3 = exp

(
1

3
log 2i

)
,
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y calculamos
log(2i) = Log 2 + i(π/2 + 2πk), con k ∈ Z ,
1

3
log(2i) =

1

3
Log 2 + i(π/6 + 2πk/3) .

Tenemos, por tanto, tres ráıces

exp

(
1

3
log(2i)

)
=

3
√
2

(
cos

(
π

6
+

2πk

3

)
+ i sen

(
π

6
+

2πk

3

))
para k = 0, 1, 2, todas con magnitud 3

√
2.

1.12.6 Derivadas de las funciones elementales

Las funciones exponenciales, seno, coseno, seno hiperbólico y coseno hiperbólico son diferen-
ciables en todo z ∈ C,

∂

∂z
ez =

∂u(x, y)

∂x
+ i

∂v(x, y)

∂x
= ex cos y + iex sen y = ez , (1.150)

∂

∂z
sen z = cos z,

∂

∂z
cos z = − sen z , (1.151)

∂

∂z
senh z = cosh z,

∂

∂z
cosh z = senh z , (1.152)

Las funciones tangente y tangente hiperbólicas son diferenciables en todo el plano complejo,
salvo en los ceros del coseno y el coseno hiperbólico, respectivamente

∂

∂z
tan z =

1

cos2 z
, ∀z ̸= π/2 + kπ, k ∈ Z , (1.153)

∂

∂z
tanh z =

1

cosh2 z
, ∀z ̸= πi/2 + kπi, k ∈ Z . (1.154)

El logaritmo principal es diferenciable en todo el plano complejo, excepto en el eje real no
positivo. En este conjunto, tenemos

∂

∂z
log z =

1

z
. (1.155)



CHAPTER 2

INTEGRALES COMPLEJAS

2.1 Curvas y contornos

• Caminos: Un camino z = γ(t) es una parametrización continua a través de una
variable real t que vaŕıa en un intervalo [α, β] que asumimos finito. Los puntos a = γ(α)
y b = γ(β) se llaman extremos. Si estos coinciden, γ(α) = γ(β), el camino se llama
cerrado.

Algunos caminos usuales son, por ejemplo, el segmento de origen a y extremo b,

γ : [0, 1]→ C , γ(t) = (1− t)a+ b t , (2.1)

y la circunferencia de centro a y radio r,

γ : [−π, π]→ C γ(t) = a+ reit . (2.2)

• Camino simple: Un camino se llama simple si la parametrización γ es continua y
biyectiva en el intervalo (α, β) de variación del parámetro. En la práctica, esto es



2.1 Curvas y contornos 33

equivalente a requerir que el camino no se corte a śı mismo, es decir, que no tenga
nodos u otros puntos que se obtienen para dos o más valores distintos de t, γ(t) ̸= γ (t′)
para todo t, t′ ∈ [α, β]. La siguiente curva, por ejemplo, no es simple,

• Camino de Jordan: Un camino simple y cerrado se llama camino de Jordan (la
biyectividad se pierde solo en los extremos).

• Camino diferenciable: Un camino se dice diferenciable o regular si es posible definir
una dirección tangente al camino en cada punto del mismo, o en otras palabras, si la
parametrización admite una derivada γ′(t) continua y no nula en cada punto. estas
condiciones excluyen el caso en el que recorremos la curva deteniéndonos en un punto
(sin velocidad, no conocemos la dirección del movimiento), o cuando hay más de una
dirección tangente.

• Camino rectificable: Un camino γ(t) = x(t) + iy(t) se dice rectificable si “en casi
todas partes”1 tiene una derivada γ′(t) con un valor absoluto integrable que define la
longitud del camino, i.e.

Lγ =

∫ β

α

∣∣γ′(t)∣∣ dt = ∫ β

α

√
[x′(t)]2 + [y′(t)]2dt . (2.3)

Obviamente, un camino es diferenciable a trozos también es rectificable.

• Caminos equivalentes: Dos caminos γ1 : [α1, β1] −→ C y γ2 : [α2, β2] −→ C se
dicen equivalentes si uno se obtiene a partir del otro mediante un cambio de variable
adecuado, o más formalmente si existe una función τ : [α1, β1]

sur−→ [α2, β2] continua,
sobreyectiva y estrictamente creciente, tal que γ1(t) = γ2(τ(t)) para cada t ∈ [α1, β1].

• Curvas: La clase de caminos equivalentes según la relación de equivalencia anterior
se llama curva, siendo está determinada únicamente por su trayectoria geométrica y
no por la manera en que se recorre. Nótese, sin embargo, que, al haber requerido que
el cambio de variable entre caminos equivalentes se exprese a través de una función
creciente que mantiene el orden de los puntos a lo largo de la curva, la dirección de
recorrido sigue siendo relevante. Diremos que una curva cerrada limitando una región
D se recorre en el sentido o dirección positiva si al hacerlo dicha región queda a la

1Más concretamente, en todas partes, excepto en un conjunto finito de puntos de (α, β) en los cuales tiene
ĺımites laterales distintos.
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izquierda de la curva. Por ejemplo, en el caso de un ćırculo centrado en el origen, la
dirección positiva es la dirección en sentido antihorario.

Las mismas condiciones y definiciones aplicables a caminos se extienden naturalmente a
las curvas, definiendo definir los conceptos de curva de Jordan, rectificable y diferencia-
ble (siempre y cuando el cambio de variable τ este dado por una función diferenciable,
continua y con derivada estrictamente positiva).

2.2 Integrales de ĺınea y contorno

Consideremos ahora la integración de funciones f(z) de variable compleja z = x + iy a lo
largo de curvas γ en el plano complejo. A menos que se especifique lo contrario, asumiremos
siempre que estas curvas son rectificables y no se cruzan a śı mismas.

Sea z = z(t) = x(t) + iy(t) la ecuación paramétrica de una curva γ en el plano complejo,
con t1 ≤ t ≤ t2 un parámetro real y x(t) e y(t) funciones uńıvocas, reales, continuas y
derivables, con derivadas primeras continuas.

Dividiendo el arco situado entre los puntos terminales de la curva en n intervalos, z0 =
a, z1, . . . , zn−1, zn = b, y eligiendo un punto adicional ζk en cada arco zk−1zk, evaluamos el
ĺımite n→∞ de la suma

In =
n∑

k=1

f (ζk) (zk − zk−1) =
n∑

k=1

f (ζk)∆zk , (2.4)

con ∆zk ≡ zk−zk−1 y |∆zk| → 0 para cada k, definiendo en caso de existir la llamada integral
de ĺınea de f(z) a lo largo de la curva γ,

I =

∫
γ
f(z)dz = lim

n→∞

n∑
k=1

f (ζk) (zk − zk−1) . (2.5)

Las integrales de ĺınea a lo largo curvas cerradas con puntos terminales coincidentes reciben
el nombre de integrales de contorno y vienen denotadas como

I =

∮
γ
f(z)dz . (2.6)
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Las propiedades fundamentales de las integrales de ĺınea son análogas a las de las integrales
ordinarias. En particular, tenemos linearidad,∫

γ
[af(z) + bg(z)]dz = a

∫
γ
f(z)dz + b

∫
γ
g(z)dz , (2.7)

y aditividad con respecto al intervalo,∫
γ1∪γ2

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz . (2.8)

Esta última propiedad permite definir integrales para curvas que no sean simples. Además,
podemos recorrer la curva γ : [α, β]→ C en sentido inverso (−̇γ)(t) = γ(β +α− t) (variando
t de t2 a t1), ∫

−γ
f(z)dz = −

∫
γ
f(z)dz , (2.9)

y considerar cambios de variable complejos a través de transformaciones de coordenadas
z = z(ζ) invertibles y con Jacobiano no nulo,∫

γ
f(z)dz =

∫
γ′
f(z(ζ))

dz(ζ)

dζ
dζ, (2.10)

con γ y γ′ imágenes una de la otra, γ = z(γ′).

2.3 Primitivas

Supongamos que una función f(z) pueda expresarse como la derivada de una función primitiva
F (z) en una región abierta del plano complejo que contiene la curva γ,

f(z) =
dF (z)

dz
. (2.11)

Si f(z) es continua, esta propiedad nos permite recuperar el llamado teorema fundamental
del cálculo integral o regla de Barrow,∫

γ
f(z)dz =

∫
γ

dF (z)

dz
dz =

∫ tb

ta

dF (z(t))

dt
dt = F (z)

∣∣∣b
a
= F (b)− F (a) , (2.12)

Nótese en particular que la integral no depende del camino, sino solo de los extremos a y b.

Ejemplo: Evaluación de la integral
∫ π/4
0 e−2itdt

∫ π/4

0
e−2itdt = − e−2it

2i

∣∣∣∣π/4
0

=
1 + i

2i
=

1

2
− i

2
.
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En particular, para un camino cerrado γ con extremos coincidentes a = b tenemos∮
γ
f(z)dz =

∮
γ

dF (z)

dz
dz = 0 . (2.13)

Además, si todas las derivadas existen y son continuas, podemos escribir

d

dz
(f(z)g(z)) = f(z)

dg(z)

dz
+
df(z)

dz
g(z) , (2.14)

y ∫
γ

df(z)

dz
g(z)dz = f(z)g(z)|z=b

z=a −
∫
γ

dg(z)

dz
f(z)dz . (2.15)

2.4 Desigualdad de Darboux

Si f(z) es una función holomorfa en una región simplemente conexa D y γ es un camino
rectificable en D, podemos acotar la suma (2.4) que define la integral (2.5) para n → ∞
mediante desigualdad triangular generalizada,

|In| ⩽
n∑

k=1

|f (ζk)| |zk − zk−1| ⩽ max
γ
|f(z)|

n∑
k=1

|zk − zk−1| ⩽ max
γ
|f(z)|Lγ , (2.16)

y con ello el módulo de la integral de una función compleja f a lo largo de una curva γ,

∣∣∣∣∫
γ
f(z)dz

∣∣∣∣ ⩽ max
z∈γ
|f(z)|Lγ , (2.17)

con |f(z)| el valor absoluto de la f(z) y Lγ la longitud de la curva en el plano complejo. En
otras palabras, la desigualdad de Darboux establece que el valor absoluto de una integral
compleja a lo largo de un camino es acotado por el máximo valor absoluto de la función f(z)
en ese camino, multiplicado por la longitud del camino. Esta desigualdad es extremadamente
útil para estimar el valor de integrales complejas, ya que proporciona una forma de acotar el
valor absoluto de la integral sin calcular la integral en śı.

Ejemplo:
∣∣∣∫γ dz

z̄2+z̄+1

∣∣∣ en el arco del ćırculo |z| = 3 entre z = 3 y z = 3

Teniendo en cuenta que para |z| = 3

∣∣z̄2 + z̄ + 1
∣∣ ≥ ∣∣z̄2∣∣− |z̄| − 1 = |z|2 − |z| − 1 = 5 ,

∣∣∣∣ 1

z̄2 + z̄ + 1

∣∣∣∣ ≤ 1

5
,

tenemos ∣∣∣∣∫
γ

dz

z̄2 + z̄ + 1

∣∣∣∣ ≤ 6π

4

(
1

5

)
=

3π

10
<

9π

16
.
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2.5 Teorema de Cauchy

El análisis de la sección 2.3 asume la existencia de una primitiva para demostrar que el
valor de la integral depende solo de los puntos extremos, lo cual no está garantizado para
funciones complejas genéricas. Este si es el caso, sin embargo, de las funciones holomorfas
en un disco, para las cuales la nulidad de la integral a lo largo de una trayectoria cerrada
simple, garantiza la independencia del camino entre los puntos extremos. Este resultado se
resume en el llamado teorema (integral) de Cauchy. 2

Sea f(z) una función holomorfa en una región abierta simplemente conexa D, entonces,
si γ es una curva de Jordan, regular a trozos, contenida en D, se cumple∮

γ
f(z)dz = 0 . (2.18)

Además, f admite una primitiva en D.

Teorema de Cauchy

Aunque la formulación del teorema es extremadamente simple, su demostración general
es algo laboriosa y no la consideraremos aqúı. Nos conformaremos con demostrarlo con la
asunción adicional de que f ′(z) es continua. Esta última condición nos permite hacer uso
del teorema de Green en R2, el cual relaciona la integral de ĺınea de un campo vectorial
F = (P,Q) : D → R2 sobre una curva cerrada γ (con P y Q continuas y con derivadas
parciales continuas) con una integral doble sobre el recinto D que encierra la curva,

∫
γ
(P dx+Qdy) =

∫
D

(
∂Q

∂x
− ∂P

∂y

)
dx dy . (2.19)

En particular, separando f(z) y dz en sus partes reales e imaginarias, f = u+ iv y z = x+ iy,∮
γ
fdz =

∮
γ
(u dx− v dy) + i

∮
γ
(v dx+ u dy) , (2.20)

y usando el teorema de Green en ambas integrales obtenemos∮
γ
f = −

∮
B
(uy + vx) dx dy + i

∮
B
(ux − vy) dx dy = 0 , (2.21)

donde en el último paso hemos tenido en cuenta las condiciones de holomorfismo en (1.96).
Como anticipamos, este resultado garantiza que la integral de contorno entre dos puntos en un

2En su forma original, el teorema requeŕıa una hipótesis adicional, es decir, no solo que f(z) fuera derivable,
sino también que dicha derivada fuera continua. Posteriormente, Goursat se dio cuenta de que la derivada de
una función holomorfa siempre es continua y demostró que la continuidad de la derivada no es necesaria. Con
base en esto, el teorema también es conocido como el teorema de Cauchy-Goursat.
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dominio de holomorfismo simplemente conexo no dependa del camino elegido para conectar
los dos puntos. En particular, dada la unión de dos curvas arbitrarias C1 y C2 conectando
dos puntos fijos a y b, con una de ellas recorrida en sentido inverso,

se tiene que

0 =

∮
C1∪{−C2}

f(z)dz =

∫
C1

f(z)dz −
∫
C2

f(z)dz . (2.22)

En este caso, tiene sentido hablar de
∫ b
a f(z) dz, ya que la integral no depende del camino.

El teorema de Cauchy se puede extender a regiones múltiplemente conexas que se vuelven
simplemente conexas mediante la formación de barreras o ĺıneas de corte. En este caso, es
importante prestar atención a la orientación relativa de las diversas curvas que componen
la curva total. En particular, dichas curvas deben tener una orientación relativa de manera
que, desde un mismo lado, encierren una región conexa en la cual la función es holomorfa.
Consideremos por ejemplo una función f(z) holomorfa en un dominio abierto D como el de la
figura, con γ = γ1 ∪ γ2 y γ1 y γ2 dos curvas de Jordan recorridas respectivamente en sentido
antihorario y horario. En particular, la orientación es tal que las curvas tienen una región a
su izquierda que está completamente contenida en D.

Abriendo γ1 y γ2 y agregando segmentos orientados que conecten dichas curvas sin cambiar
las orientaciones anteriores, podemos obtener una sola curva cerrada Γ, regular a trozos.
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Puesto que la nueva curva Γ rodea ahora una región simplemente conexa donde f(z) es
holomorfa, podemos aplicar sin problemas el teorema de Cauchy en la formulación (2.18),

0 =

∮
Γ
f(z)dz =

(∫
C1

+

∫
AB

+

∫
C2

+

∫
B′A′

)
f(z)dz . (2.23)

Nótese ahora que, en el ĺımite en que A y B se acercan infinitesimalmente a A′ y B′, las
integrales a lo largo de los segmentos orientados AB y B′A′ se anulan entre śı, mientras que
las integrales a lo largo de los arcos C1 y C2 se aproximan a las integrales en las curvas
cerradas γ1 y γ2. Tenemos, por tanto, que(∮

γ1

+

∮
γ2

)
f(z)dz =

∮
γ
f(z)dz = 0 . (2.24)

Este resultado es fácilmente extensible a regiones con un mayor números de “agujeros”. En
particular, en una región conexa, la integral de una función holomorfa a lo largo de una curva
de Jordan γ recorrida en sentido antihorario está dada por la suma de integrales a lo largo
de las curvas que rodean los agujeros contenidos en γ, recorridas en sentido horario,∮

γ
f(z)dz =

∑
k

∮
γk

f(z)dz = 0 . (2.25)
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Además de ilustrar la aplicabilidad del Teorema de Cauchy a regiones múltiplemente conexas,
el resultado (2.24) prueba el llamado Teorema de deformación de circuitos.

Si una función es holomorfa en una región limitada por dos curvas de Jordan disjuntas
γ y γ′ recorridas en sentido antihorario, entonces∮

γ
f(z)dz =

∮
γ′
f(z)dz . (2.26)

Teorema de deformación de circuitos

En otras palabras, una trayectoria cerrada puede ser modificada libremente y de manera
continua, siempre y cuando dichas modificaciones ocurran dentro de la región de holomorfismo
del integrando y las caracteŕısticas topológicas de la curva permanezcan inalteradas.

2.6 Representación integral de Cauchy

A partir del teorema de Cauchy, es posible derivar una fórmula integral de gran importancia
para el desarrollo de la teoŕıa y con una amplia variedad de aplicaciones en problemas f́ısicos.

Dada una función f(z) holomorfa en una región abierta y simplemente conexa D, y
una curva de Jordan γ, regular a trozos y recorrida en sentido antihorario (positivo), se
cumple que

1

2πi

∮
γ

f(z′)

z′ − z
dz′ =

{
f(z) si z está en el interior de γ ,

0 si z está en el exterior de γ .
(2.27)

Teorema de representación integral de Cauchy

Si z está fuera de la curva γ, el resultado del teorema es inmediato, ya que el integrando

g(z′) =
f(z′)

z′ − z
(2.28)

es holomorfo en todo el interior de la curva γ y, por tanto, según el teorema de Cauchy, su
integral a lo largo de ella es idénticamente cero,∮

γ
g(z′)dz′ = 0 . (2.29)

Para demostrar el teorema en el caso en el caso no trivial en el que z está dentro de la curva
γ, tendremos en cuenta que, debido a su diferenciabilidad, la función f(z) es continua en D,
existiendo, por tanto, un número positivo δ > 0 tal que |z′ − z| < δ(ϵ) para cada entorno
|f(z′) − f(z)| < ϵ de z. Parametrizando en sentido antihorario un ćırculo Γ con centro en z
y radio r < δ(ϵ) suficientemente pequeño para que el ćırculo esté dentro de γ,

z′(θ) = z + reiθ , 0 ⩽ θ ⩽ 2π , z′ ∈ Γ , (2.30)
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tenemos ∣∣∣∣f(z′)− f(z)z′ − z

∣∣∣∣ = |f(z′)− f(z)|r
<
ϵ

r
, (2.31)

Utilizando ahora la desigualdad de Darboux,∣∣∣∣∮
Γ

f(z′)− f(z)
z′ − z

dz′
∣∣∣∣ ⩽ ϵ

r
2πr = 2πϵ , (2.32)

y teniendo en cuenta que∮
Γ

f(z)

z′ − z
dz′ = f(z)

∫ 2π

0

1

reiθ
ireiθdθ = 2πif(z) , (2.33)

podemos escribir

lim
ϵ→0

∮
Γ

f(z′)

z′ − z
dz′ = lim

ϵ→0

∮
Γ

f(z′)− f(z)
z′ − z

dz′︸ ︷︷ ︸
=0

+ lim
ϵ→0

∮
Γ

f(z)

z′ − z
dz′ = 2πif(z) . (2.34)

Puesto que el integrando f(z′)/(z′ − z) en el lado izquierdo de la expresión anterior es holo-
morfo en cada punto z′ ̸= z, la integral sobre la circunferencia Γ es igual a la integral sobre
γ, permitiéndonos escribir ∮

γ

f(z′)

z′ − z
dz′ = 2πif(z) , (2.35)

lo cual concluye la prueba del teorema. Nótese que, salvo que f(z′) se anule para z′ → z, la
integral en esta expresión no existe para z ∈ γ.

Ejemplo:
∫
γ

2dz
z2−1

en ćırculo γ de radio 1/2, centro z = 1, orientado positivo.

Escribiendo el integrando en la forma

2

z2 − 1
=

1

z − 1
− 1

z + 1
,

obtenemos ∫
γ

2

z2 − 1
dz =

∫
γ

1

z − 1
dz −

∫
γ

1

z + 1
dz .

La primera integral puede calcularse usando la fórmula integral de Cauchy (2.35),
obteniendo ∫

γ

1

z − 1
dz = 2πi .

La segunda integral es nula por el teorema de Cauchy, puesto que su integrando en
anaĺıtico dentro de γ ∫

γ

1

z + 1
dz = 0 .
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Tenemos, por tanto, ∫
γ

2

z2 − 1
dz = 2πi .

Una de las consecuencias más importantes de la fórmula integral es que la derivada de una
función holomorfa en un dominio es también holomorfa.3 En particular, escribiendo la ex-
presión (2.35) en la forma

f(z) =
1

2πi

∮
γ

f(z′)

z′ − z
dz′ , (2.36)

y teniendo la continuidad de f(z′) podemos escribir

f(z +∆z)− f(z)
∆z

=
1

2πi

∮
γ

[
f(z′)

z′ − z −∆z
− f(z′)

z′ − z

]
dz′

∆z

=
1

2πi

∮
γ

f(z′)

(z′ − z)2
dz′ +

1

2πi

∮
γ

[
f(z′)

z′ − z −∆z
− f(z′)

z′ − z
− f(z′)∆z

(z′ − z)2

]
dz′

∆z
.

Si el integrando en último término está acotado, la correspondiente integral se anula en el
ĺımite ∆z → 0,∣∣∣∣∮

γ

[
f(z′)

z′ − z −∆z
− f(z′)

z′ − z
− f(z′)∆z

(z′ − z)2

]
dz′

∆z

∣∣∣∣ = ∣∣∣∣∮
γ

f(z′) dz′

(z′ − z)2(z′ − z −∆z)

∣∣∣∣ |∆z| −→∆z→0
0 ,

dando lugar a una representación integral para la derivada

df(z)

dz
=

1

2πi

∮
γ

f(z′)

(z′ − z)2
dz′ . (2.37)

Este resultado se puede generalizar por inducción a derivadas superiores,

dnf

dzn
(z) =

n!

2πi

∮
γ

f(z′)

(z′ − z)n+1
dz′ , (2.38)

permitiéndonos concluir que para si una función de variable compleja es derivable una vez
(garantizando, por tanto, la continuidad), esta será derivable a cualquier orden. En otras
palabras, las funciones holomorfas son ”suaves” en su dominio de holomorfismo y no presentan
saltos o zonas puntiagudas.

2.7 Teorema de Morera

El llamado teorema de Morera puede entenderse como el “inverso” del teorema de Cauchy.

3Nótese, por el contrario, que la derivabilidad de funciones reales de variable real no implica en absoluto
que las derivadas de la función sean nuevamente derivables.
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Si la integral de una función continua en una región abierta y conexa D se anula para
cada curva cerrada, simple y regular por tramos en D,∮

γ
f(z) dz = 0 , (2.39)

entonces f(z) es holomorfa en D.

Teorema de Morera

La demostración es sencilla. El hecho de que la integral se anule para cualquier curva γ nos
dice que f(z) no depende del camino, permitiéndonos definir

F (z) =

∫ z

z0

f(z′) dz′ , (2.40)

con z0 un punto fijo en D y z variable en D. Teniendo en cuenta ahora la continuidad de
f(z),

F (z +∆z)− F (z)
∆z

=
1

∆z

(∫ z+∆z

z0

−
∫ z

z0

)
f(z′)dz′ =

1

∆z

∫ z+∆z

z
f(z′)dz′ . (2.41)

separando expĺıcitamente dicha función en la integral,

F (z +∆z)− F (z)
∆z

=
1

∆z

∫ z+∆z

z

(
f(z) + f(z′)− f(z)

)
dz′ = f(z) +

1

∆z

∫ z+∆z

z

(
f(z′)− f(z)

)
dz′ ,

y teniendo en cuenta la desigualdad de Darboux,∣∣∣∣ 1

∆z

∫ z+∆z

z

[
f(z′)− f(z)

]
dz′
∣∣∣∣ ⩽ max

z′∈[z,z+∆z]

∣∣f(z′)− f(z)∣∣ −→
∆z→0

0 , (2.42)

concluimos que la función F (z) es holomorfa (derivable)

dF (z)

dz
= f(z) . (2.43)

Puesto que f(z) es la derivada de una función holomorfa, es también holomorfa, completando
la demostración del teorema.

2.8 Teorema de Liouville

Si una función de variable compleja f(z) es holomorfa y acotada por una constante M ,
|f(z)| < M , en todo el plano complejo, entonces f es constante.

Teorema de Liouville
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Para demostrar el teorema consideremos una circunferencia de radio r y centro z0 en el plano
complejo que encierra otro punto z1 ∈ C. De acuerdo con la fórmula integral de Cauchy,
podemos escribir

f(z1)−f(z0) =
1

2πi

∮
γ

f(z′)

z′ − z1
dz′− 1

2πi

∮
γ

f(z′)

z′ − z0
dz′ =

z1 − z0
2πi

∮
γ

f(z′)dz′

(z′ − z1)(z′ − z0)
. (2.44)

Teniendo en cuenta que

|z− z0| = r, |z− z1| = |z− z0 + z0− z1| ≥ |z− z0| − |z0− z1| = r− |z0− z1| ≥ r/2 , (2.45)

y escogiendo r lo suficientemente grande para como para que |z0 − z1| < r/2, obtenemos

|f(z1)− f(z0)| =
|z1 − z0|

2π

∣∣∣∣∮
γ

f(z)dz

(z − z1)(z − z0)

∣∣∣∣ ≤ |z1 − z0|M(2πr)

2π(r/2)r
=

2|z1 − z0|M
r

, (2.46)

Puesto que |f(z1)−f(z0)| → 0 cuando r →∞, f(z) debe ser necesariamente constante, como
queŕıamos demostrar.

Demostración del teorema fundamental del álgebra

El teorema de Liouville proporciona una de las demostraciones más sencillas del
teorema fundamental del Álgebra, el cual establece que toda ecuación polinomial
P (z) = a0 + a1z + a2z

2 + · · ·+ anz
n = 0, con n ≥ 1 y an ̸= 0 tiene por lo menos

una ráız. En particular, si P (z) = 0 no tuviera ningún cero, la función f(z) = 1/P (z)
seŕıa anaĺıtica en todo el plano complejo, estando además acotada para |z| → ∞ (en
concreto, |f(z)| = 1/|P (z)| tiende a cero cuando |z| → ∞). De acuerdo con el teorema
de Liouville esto implicaŕıa que f(z), y por ende P (z), debeŕıan ser constante, lo cual
es obviamente una contradicción. Se concluye, por tanto, que P (z) = 0 debe tener por
lo menos una ráız.



CHAPTER 3

SERIES DE TAYLOR Y DE LAURENT

3.1 Series de potencias y criterios de convergencia

Consideremos una serie de potencias infinita centrada en z0 ∈ C,

∞∑
n=0

fn(z) , (3.1)

con z ∈ C, fn(z) = ak (z − z0)n y an ∈ C. De manera análoga al caso real podemos introducir
diferentes criterios de convergencia:

• Convergencia puntual: Se dice que la serie converge puntualmente a una función
f(z) en un dominio D si y solo si, para cada z,

lim
k→∞

(
k∑

n=0

fk(z)− f(z)

)
= 0 . (3.2)

• Convergencia absoluta: Se dice que la serie converge absolutamente si lo hace la
serie de sus valores absolutos,

∑∞
n=0 |fn(z)|. La convergencia absoluta de una serie

implica su convergencia puntual.

Los términos de una serie absolutamente convergente pueden reordenarse de cualquier
manera, y todas esas series reordenadas convergen a la misma suma. Asimismo, la
suma, la diferencia y el producto de series absolutamente convergentes es absolutamente
convergente. Esto no es cierto, sin embargo, para series condicionalmente convergentes.

• Convergencia condicional: Se dice que la serie es condicionalmente convergente si
esta converge, pero no lo hace la serie de sus valores absolutos

∑∞
n=0 |fn(z)|.
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• Convergencia uniforme: Se dice que una serie de potencias infinita
∑∞

n=0 fn(z)
converge uniformemente a una función f(z) en un dominio D si y solo si

lim
k→∞

[
sup
z∈D

∣∣∣∣∣
k∑

n=0

fn(z)− f(z)

∣∣∣∣∣
]
= 0 . (3.3)

3.1.1 Criterios de convergencia

• Criterio de comparación: Si
∑
|gn(z)| converge y |fn(z)| ≤ |gn(z)|, entonces

∑
fn(z)

converge absolutamente. Sin embargo, si
∑
|gn(z)| diverge y |fn(z)| ≥ |gn(z)|,

∑
|fn(z)|

diverge, pero
∑
fn(z) puede converger o no.

Ejemplo: Convergencia de la serie
∑∞

n=1
zn

n(n+1) en |z| ≤ 1.

Puesto que |z| ≤ 1 podemos escribir∣∣∣∣ zn

n(n+ 1)

∣∣∣∣ = |z|n

n(n+ 1)
≤ 1

n(n+ 1)
≤ 1

n2
.

Identificando fn(z) = zn/n(n+ 1) y gn(z) = 1/n2, aplicando el criterio de com-
paración y teniendo en cuenta que la suma

∑
1/n2 es una serie p convergente,

concluimos que
∑
|fn(z)| converge, y, por tanto, que

∑
fn(z) converge absolu-

tamente.

• Criterio del cociente: Dado el ĺımite L = limn→∞ |fn+1(z)/fn(z)|, la serie
∑
fn(z)

converge (absolutamente) si L < 1 y diverge si L > 1 (o L = +∞). Si L = 1, este
criterio no proporciona información.

Ejemplo: Convergencia de la serie
∑∞

n=0 n!z
n

Excluyendo el punto z = 0 para el que la serie converge y aplicando el criterio
del cociente, obtenemos

L = lim
n→∞

∣∣∣∣fn+1(z)

fn(z)

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)!zn+1

n!zn

∣∣∣∣ = lim
n→∞

(n+ 1)|z| =∞ .

Por tanto, la serie converge unicamente para z = 0.

• Criterio de la ráız n-ésima: Dado el ĺımite L = lim n→∞
n
√
|fn(z)|, la serie

∑
fn(z)

converge (absolutamente) si L < 1 y diverge si L > 1. Si L = 1 o no existe, esta prueba
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no proporciona información.

Ejemplo: Convergencia de la serie
∑∞

n=0
zn

n!

Aplicando el criterio de la ráız a la serie
∑∞

n=0
zn

n! y teniendo en cuenta la relación

limn→∞
n
√
n! =∞, obtenemos

L = lim
n→∞

n

√∣∣∣∣znn!
∣∣∣∣ = lim

n→∞

|z|
n
√
n!

= 0 < 1 .

La serie es absolutamente convergente para todo z en el plano complejo.

• Fórmula de Cauchy-Hadamard: La fórmula de Cauchy-Hadamard

R =
1

lim supn→∞
n
√
|an|

(3.4)

permite determinar el radio de convergencia R de una serie de potencias
∑∞

n=0 fn(z)
con fn(z) = ak (z − z0)n y an, z, z0 ∈ C. Esta fórmula involucra el ĺımite superior,

lim sup
n→∞

xn = lim
n→∞

(sup
k≥n

xk)

un concepto matemático definido como el ĺımite del supremo o mı́nimo ĺımite superior de
una secuencia xn. Es decir, estamos tomando el supremo de todos los términos a partir
del término n-ésimo hasta el final de la secuencia y tomando el ĺımite cuando n tiende
a infinito. En términos simples, este resultado nos dice que el radio de convergencia de
la serie está relacionado con la tasa de crecimiento de los coeficientes an. Si el ĺımite
lim supn→∞

n
√
|an| existe, la serie converge absolutamente para |z| < R y diverge para

|z| > R. Si el ĺımite es ∞, el radio de convergencia es R = 0, indicando convergencia
solo en el centro de la serie.

Ejemplo: Convergencia de la serie
∑∞

n=0(sinn)z
n

Los criterios del cociente y la ráız n-esima no permiten determinar la con-
vergencia de la serie

∑∞
n=0(sinn)z

n, puesto que los ĺımites de las sucesiones
| sinn|/| sin(n+ 1)| y n

√
| sinn| no existen. El criterio de Cauchy-Hadamard es,

sin embargo, aplicable. Puesto

1

R
= lim sup

n→∞
n
√
| sinn| = lim

n→∞

(
sup
k≥n

k
√
| sin k|

)
= lim

n→∞
1 = 1 .!‘,
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el radio de convergencia de la serie es R = 1.

3.2 Series de Taylor

Una de las propiedades más importantes de las funciones holomorfas es que son desar-
rollables en series de Taylor. En concreto, dada una función de variable compleja f(z)
holomorfa en el interior de un disco D de centro z = z0 y radio r, podemos escribir

f(z) =
1

2πi

∮
γ

f (z′)

z′ − z
dz′, (3.5)

con z ∈ D y γ una circunferencia centrada en z0 y contenida en D, con z en su interior.1

Reescribiendo el kernel 1/(z′ − z) en la integral (3.5) como una serie geométrica

1

z′ − z
=

1

(z′ − z0)− (z − z0)
=

1

z′ − z0
1

1− (z−z0)
(z′−z0)

=
1

z′ − z0

∞∑
n=0

(
z − z0
z′ − z0

)n

, (3.6)

con n > 0 y ∣∣∣∣ z − z0z′ − z0

∣∣∣∣ < 1 , (3.7)

obtenemos

f(z) =
1

2πi

∮
γ
dz′

∞∑
n=0

f (z′)

(z′ − z0)n+1 (z − z0)
n . (3.8)

Puesto que la serie de potencias en esta expresión es uniformemente convergente dentro de
su radio de convergencia, podemos integrar cada sumando de manera individual, obteniendo
una expansión en serie o desarrollo de Taylor,

f(z) =

∞∑
n=0

an (z − z0)n , an =
1

2πi

∮
γ

f (z′)

(z′ − z0)n+1dz
′ =

1

n!

dnf(z0)

dzn
, (3.9)

donde en el último paso hemos tenido en cuenta la representación integral para la derivada
en (2.37). Nótese que la expansión (3.9) deja de ser válida si la circunferencia γ encuentra

1Dicha circunferencia puede por supuesto deformarse en cualquier otra curva cerrada, siempre y cuando
esta no incluya puntos singulares de la función y contenga z0 en su interior.
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un punto en el que f(z) no es holomorfa o derivable en sentido complejo. Esto determina el
radio de convergencia de la serie.

Ejemplo: Serie de potencias de f(z) = z sin z en torno a z0 = π

Para calcular la serie de potencias de f(z) = z sin z en torno a z0 = π, calculamos sus
derivadas,

f ′(z) = sin z + z cos z ,

f ′′(z) = 2 cos z − z sin z ,
f ′′′(z) = −3 sin z − z cos z ,
f (iv)(z) = −4 cos z + z sin z ,

...

f (2n+1)(z) = (−1)n(2n+ 1) sin z + (−1)nz cos z ,
f (2n)(z) = (−1)n+1(2n) cos z + (−1)nz sin z .

Evaluando en z = z0 = π, y usando la segunda expresión en (3.9), podemos identificar
fácilmente los siguientes coeficientes de la serie de Taylor,

a0 = 0 , a1 = −π , a2 = −1 , a3 =
π

3!

a4 =
1

3!
, a5 = −

π

5!
, a6 = −

1

5!
,

o de manera más general

a2n =
(−1)n

(2n− 1)!
, a2n+1 = (−1)n+1 π

2n+ 1
.

La correspondiente serie de Taylor de f(z) = z sin z en torno a z0 = π toma, por tanto,
la forma

f(z) = −π(z − π)− (z − π)2 + π

3!
· (z − π)3 + 1

3!
· (z − π)4 − π

5!
· (z − π)5 + . . .

= π

∞∑
n=0

(−1)n+1 (z − π)2n+1

(2n+ 1)!
+

∞∑
n=1

(−1)n (z − π)
2n

(2n− 1)!
.

Este método proporciona una manera sistemática de calcular la serie de Taylor de una de
función holomorfa dada y su correspondiente radio de convergencia. Para expansiones en
torno a z0 = 0 (llamadas usualmente series de Maclaurin), tenemos por ejemplo2

2En el caso de funciones mult́ıvocas utilizamos la rama principal.
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Función Serie en torno a z0 = 0 Radio de convergencia

1
1−z

∑∞
n=0 z

n |z| < 1

1
(1−z)2

∑∞
n=1 nz

n−1 |z| < 1

cos z
∑∞

n=0(−1)n
z2n

(2n)! |z| <∞

sin z
∑∞

n=0(−1)n
z2n+1

(2n+1)! |z| <∞

ez
∑∞

n=0
zn

n! |z| <∞

log(1 + z)
∑∞

n=0
(−1)n

n+1 z
n+1 |z| < 1

(1 + z)β
∑∞

n=0

 β

n

 zn |z| < 1

El conjunto de puntos del dominio donde una función es anaĺıtica se llama dominio de analiti-
cidad de la función. Si el dominio de analiticidad coincide con todo el plano complejo (es
decir, si la función es desarrollable en series de potencias en un entorno de cada punto con
un radio de convergencia infinito), la función se llama entera. Por ejemplo, las funciones ez

sin z, cos z en la tabla anterior son funciones enteras. Viceversa, si una serie de potencias
tiene un radio de convergencia infinito, la serie representa una función entera.

En determinadas ocasiones es posible obtener la expansión en serie de potencias mediante tru-
cos y manipulaciones algebraicas, evitando aśı el tedioso cálculo de coeficientes que acabamos
de ilustrar en el ejemplo anterior.

Ejemplo: Serie de potencias de f(z) = z2

(1−z2)2
en torno a z0 = 0

Para calcular la serie de potencias de f(z) = z2

(1−z2)2
en torno a z0 = 0, podemos hacer

uso de la expansión
1

1− α
= 1 + α+ α2 + α3 + . . .

válida para |α| < 1. Tomando en particular α = z2, obtenemos

1

1− z2
= 1 + z2 + z4 + z6 + . . .

Derivando a ambos lados de esta expresión,

2z

(1− z2)2
= 2z + 4z3 + 6z5 + . . . ,

y multiplicando por z/2, tenemos

z2

(1− z2)2
= z2 + 2z4 + 3z6 + . . . =

∞∑
n=0

n · z2n .



3.3 Series de Laurent 51

El resultado (3.9) ilustra el hecho de que toda función holomorfa es también anaĺıtica o
desarrollable en series de potencias y viceversa. Esta última propiedad es una consecuencia
directa del teorema de Morera, que establece que toda función anaĺıtica es también holomorfa.
De hecho, desarrollando f(z) en serie de potencias en un entorno del origen3 dentro del radio
de convergencia,

f(z) =

∞∑
n=0

anz
n , |z| < R , (3.10)

e integrando el resultado término a término4 a lo largo de una curva cerrada γ dentro también
del radio de convergencia,∮

γ
f(z)dz =

∮
γ

{ ∞∑
n=0

anz
n

}
dz =

∞∑
n=0

an

∮
γ
zndz = 0 , (3.11)

verificamos fácilmente que f(z) cumple el mencionado teorema, siendo, por tanto, holomorfa
dentro del radio de convergencia. Este resultado permite utilizar indistintamente los términos
holomorfa y anaĺıtica.

3.3 Series de Laurent

Hemos visto que si una función es holomorfa en un punto z0 y en todo su entorno circular,
entonces puede ser desarrollada en una serie de Taylor alrededor de ese punto. A continuación,
desarrollaremos un nuevo tipo de serie doblemente infinita de gran utilidad.

Consideremos una función f(z) holomorfa en una región anular o corona circular r1 <
|z − z0| < r2 alrededor de un punto z0 en el cual f(z) no es necesariamente holomorfa. Dado
un punto z dentro de la corona circular y una curva cerrada a trozos C compuesta por los
arcos y segmentos en la figura y encerrando una región simplemente conexa en la que f(z)
es holomorfa, podemos escribir

∮
C

f (z′)

z′ − z
dz′ = 0 . (3.12)

Eliminando los segmentos como hicimos en la sección 2.5, obtenemos

3No es restrictivo considerar el origen.
4Nótese que zn es holomorfa para cada n > 0.
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∮
Γ2

f (z′)

z′ − z
dz′ −

∮
Γ1

f (z′)

z′ − z
dz′ −

∮
γ

f (z′)

z′ − z
dz′ = 0 , (3.13)

o equivalentemente ∮
γ

f (z′)

z′ − z
dz′ =

∮
Γ2

f (z′)

z′ − z
dz′ −

∮
Γ1

f (z′)

z′ − z
dz′ . (3.14)

Puesto que la curva γ en este ĺımite sin segmentos contiene z, la representación integral de
Cauchy en (2.27) nos permite escribir

f(z) =
1

2πi

∮
γ

f (z′)

z′ − z
dz′ =

1

2πi

∮
Γ2

f (z′)

z′ − z
dz′︸ ︷︷ ︸

I2

− 1

2πi

∮
Γ1

f (z′)

z′ − z
dz′︸ ︷︷ ︸

I1

≡ I2 − I1 . (3.15)

Escribiendo el kernel 1/(z′ − z) en I2 como

1

z′ − z
=

1

z′ − z0
1

1− z−z0
z′−z0

=
1

z′ − z0

∞∑
n=0

(
z − z0
z′ − z0

)n

=

∞∑
n=0

(z − z0)n

(z′ − z0)n+1 , (3.16)

y teniendo en cuenta que para z′ ∈ Γ2, ∣∣∣∣ z − z0z′ − z0

∣∣∣∣ < 1, (3.17)

la integral sobre Γ2 en (3.15) se puede expresar en términos de potencias positivas de z− z0,

I2 =
1

2πi

∮
Γ2

f(z′)

z′ − z
dz′ =

∑
n≥0

an(z − z0)n , an =
1

2πi

∮
Γ2

f(z′)

(z′ − z0)n+1
dz′, (3.18)

en perfecta analoǵıa con la serie de Taylor. Por el contrario, para z′ ∈ Γ1 tenemos∣∣∣∣z′ − z0z − z0

∣∣∣∣ < 1 . (3.19)

Escribiendo el correspondiente denominador en la integral I1 en la forma

1

z′ − z
= − 1

z − z′
= − 1

z − z0 − (z′ − z0)
= − 1

(z − z0)
1

1− z′−z0
z−z0

= − 1

z − z0

∞∑
n=0

(
z′ − z0
z − z0

)n

= −
∞∑
n=0

(z′ − z0)n

(z − z0)n+1
= −

∑
n<0

1

(z′ − z0)n+1
(z − z0)n,

(3.20)
obtenemos una serie uniformemente convergente que se puede integrar término a término,

I1 =
1

2πi

∮
Γ1

f(z′)

z′ − z
dz′ = − 1

2πi

∑
n<0

[∮
Γ1

f(z′)

(z′ − z0)n+1
dz′
]
(z − z0)n = −

∑
n<0

an(z − z0)n,

(3.21)
con

an =
1

2πi

∮
Γ1

f(z′)

(z′ − z0)n+1
dz′. (3.22)
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Combinando finamente las ecuaciones (3.15), (3.18) y (3.21), y teniendo en cuenta que las
curvas de integración en la región de holomorfismo pueden variarse libremente para unificar
Γ1 y Γ2 en una única curva de Jordan Γ con z0 en su interior, obtenemos la llamada serie o
desarrollo de Laurent5

f(z) =
+∞∑

n=−∞
an (z − z0)n , an =

1

2πi

∮
Γ

f (z′)

(z′ − z0)n+1dz
′ , (3.23)

involucrando en general potencias positivas y negativas en cada punto z dentro de la corona.
Según esta demostración, el radio menor de la corona delimita un disco en el plano complejo
fuera del cual la serie de potencias negativas converge, mientras que el radio exterior identifica
un disco dentro del cual la serie de potencias positivas converge. Nótese en particular que no
se excluye el caso r1 = 0 y que r2 = ∞ si f(z) es holomorfa en todas partes, excepto en el
punto z0 o un entorno del mismo.

La suma de potencias positivas se conoce como la parte anaĺıtica de la serie de Laurent
de f(z) en z = z0, mientras que el resto de la serie, que consta de potencias negativas, recibe
el nombre de parte principal de la serie de Laurent de f(z) en z = z0. Si la parte principal es
cero, la serie de Laurent se reduce a una serie de Taylor. El coeficiente a−1 recibe el nombre
de residuo

a−1 ≡ Res (f, z0) .

Ejemplo: Serie de Laurent de f(z) = 1
z−2 + 1

z−1 en la corona 1 < |z| < 2

El primer término de la función

f(z) =
1

z − 2
+

1

z − 1

admite una expansión de Taylor en el disco |z| < 2,

1

z − 2
= −1

2

1

1− z
2

= −1

2

∞∑
n=0

1

2n
zn = −

∞∑
n=0

1

2n+1
zn .

Aunque el segundo término admite una expansión de Taylor en el disco |z| < 1, lo que
necesitamos realmente es una expansión fuera de este disco. Para obtenerla factor-
izamos 1/z y expandimos el resultado en potencias de 1/z con radio de convergencia
|1/z| < 1, es decir, |z| > 1,

1

z − 1
=

1

z

1

1− 1
z

=
1

z

∞∑
n=0

1

zn
=

∞∑
n=1

1

zn
.

5Aunque los coeficientes de esta serie son formalmente los mismos que los del desarrollo en serie de Taylor,
estos no son ahora expresables mediante la derivada n-ésima de f(z) en el punto z0.
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La serie de Laurent de f(z) en el anillo 1 < |z| < 2 es, por tanto,

f(z) = −
∞∑
n=0

1

2n+1
zn +

∞∑
n=1

1

zn
.

3.4 Ceros y Singularidades

3.4.1 Ceros

Si una función holomorfa f(z) se anula en un punto z = z0, ese punto recibe el nombre de
cero de f(z), siendo el orden n del mismo determinado por las condiciones

f(z0) =
df

dz
(z0) = . . . =

dn−1f

dzn−1
(z0) = 0 ,

dnf

dzn
(z0) ̸= 0 . (3.24)

En este caso, si f(z) es holomorfa en un entorno de z0 incluyendo z0, los primeros n coeficientes
de su serie de Taylor son idénticamente nulos, a0 = a1 = . . . ,= an−1 = 0, permitiéndonos
escribir

f(z) = an (z − z0)n + an+1 (z − z0)n+1 + . . . = (z − z0)n
∞∑
k=0

an+k (z − z0)k = (z − z0)n g(z) ,

(3.25)
con g(z) una función holomorfa, regular y no nula en z = z0, y por continuidad no nula en
todo un entorno de z0. Esto implica a su vez la existencia de un entorno completo de z0 en
el cual la función f(z) es no nula. El punto z0 es, por tanto, un cero aislado.

Si es imposible determinar el orden del cero de una función holomorfa f(z) en un entorno
completo de z0, o equivalentemente, si todas sus derivadas son nulas en ese punto, la expansión
en serie de Taylor impone que f(z) sea idénticamente nula en ese entorno. Esto implica en
particular que los ceros de una función anaĺıtica son necesariamente aislados, formando a lo
sumo un conjunto discreto sin puntos de acumulación en el dominio de holomorfismo, como
en la figura. Una función que es anaĺıtica en todas partes del plano complejo, excepto en una
cantidad finita de polos, se llama función meromórfica.

Por el contrario, si un punto z0 es un punto de acumulación de ceros para una función f(z)
no nula, entonces necesariamente será un punto no holomorfo de la función.
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Ejemplo:

La función f(z) = sin z tiene infinitos ceros en z = kπ. Sin embargo, dado que el
dominio de f es todo el plano complejo, estos no tienen ningún punto de acumulación,
no existiendo, por tanto, ninguna contradicción en que f no sea idénticamente cero.

3.4.2 Polos o singularidades aisladas

Las series de Laurent permiten clasificar singularidades aisladas. En concreto, si f(z) tiene
una singularidad aislada en un punto z = z0 y es anaĺıtica dentro de un disco centrado en ese
punto, pero excluyéndolo, podemos desarrollar la función en una serie de Laurent alrededor
de z0,

f(z) =

∞∑
n=0

an (z − z0)n +
a−1

z − z0
+

a−2

(z − z0)2
+ . . . . (3.26)

Es claro que si f(z) es singular en z0, al menos uno de los coeficientes a−n es necesariamente
no nulo. En particular:

• Si a−1 ̸= 0 y todos los demás coeficientes de las potencias negativas son nulos, decimos
que z0 es un polo simple.

• Si a−n ̸= 0 y a−(n+1) = a−(n+2) = . . . = a−(n+k) = . . . = 0, el punto z0 se llama polo de
orden n. En este caso, podemos escribir

f(z) =
∑
k⩾0

ak (z − z0)k +
a−1

z − z0
+

a−2

(z − z0)2
+ . . .+

a−n

(z − z0)n

=
1

(z − z0)n

a−n + . . .+ a−1 (z − z0)n−1 +
∑
k⩾0

ak (z − z0)n+k


=

1

(z − z0)n
∞∑
k=0

a−n+k (z − z0)k =
h(z)

(z − z0)n
,

(3.27)
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con h(z) una función regular y no nula en z0 y por continuidad en todo un entorno del
mismo. En otras palabras, si una función f(z) tiene un polo de orden n, la función
rećıproca 1/f(z) tiene un cero de orden n en el mismo punto.

• Si número de coeficientes no nulos para las potencias negativas a−n es infinito, el punto
z0 se llama singularidad esencial aislada. La caracteŕıstica más importante de una
singularidad esencial se desprende del teorema de Weierstrass, que establece que si una
función f(z) tiene una singularidad esencial aislada en un punto z0, entonces, para
cualquier ϵ > 0 y δ > 0, existe algún punto z con |z − z0| < δ tal que

|f(z)− a| < ϵ , (3.28)

con a un número complejo arbitrario. En otras palabras, en cualquier entorno de una
singularidad esencial aislada z0, la función f(z) vaŕıa tan rápida y ampliamente que
puede tomar cualquier valor complejo.

Ejemplo: Desarrollo en serie de f(z) = e1/z

La función e1/z es anaĺıtica en todo el plano complejo, excepto en el origen, donde
presenta una singularidad esencial. Su expansión en serie de Laurent de e1/z en torno
a este punto contiene de hecho un número infinito de potencias negativas,

e1/z = 1 +
1

z
+

1

2!

1

z2
+

1

3!

1

z3
+ . . . =

∞∑
n=0

1

n!

1

zn
.

3.4.3 Singularidades evitables

Si f(z) no está definida en un punto z = z0 pero existe el ĺımite limz→z0 f(z), entonces
z = z0 es una singularidad evitable. En tal caso, la función f(z) en z = z0 se define como
f(z0) = lim z→af(z), con lo que f(z) es anaĺıtica en z0.

Ejemplo: Desarrollo en serie de f(z) = sin z/z

La singularidad de f(z) = sin z/z en z = 0 es una singularidad evitable, puesto que el
ĺımite

lim
z→0

sin z

z
= 1 ,

existe y podemos definir

f(0) = lim
z→0

sin z

z
= 1 .



3.4 Ceros y Singularidades 57

De hecho, dicha singularidad aparente puede eliminarse mediante un mero truco alge-
braico,

sin z

z
=

1

z

(
z − z3

3!
+
z5

5!
− z7

7!
+ . . .

)
= 1− z2

3!
+
z4

5!
− z6

7!
+ . . . =

∞∑
n=0

(−1)n z2n

(2n+ 1)!
.

Si definimos f(0) = limz→0 f(z) = 1, la función f está dada por la suma de la serie
anterior para todo z ∈ C, y es, por tanto, entera.

3.4.4 Puntos en el infinito

Las consideraciones anteriores se extienden de manera natural al estudio de una función
anaĺıtica en el infinito. En particular, realizando el cambio de variable z = 1/ζ y definiendo
φ(ζ) = f(1/ζ), podemos estudiar el comportamiento de una función f(z) en z =∞ a través
del comportamiento de φ(ζ) en ζ = 0. Diremos aśı que z =∞ es un cero de orden n, un polo
de orden n, o una singularidad esencial aislada de f(z), si ζ = 0 es respectivamente un cero
de orden n, un polo de orden n, o una singularidad esencial aislada de φ(ζ).



CHAPTER 4

INTEGRALES POR RESIDUOS

4.1 Residuos

Consideremos una función anaĺıtica f(z) en una región abierta D, excluyendo un punto z0
en el que f(z) tiene una singularidad aislada. Dada una curva de Jordan γ en torno a z0,
regular a trozos, orientada en sentido positivo y contenida en D, la integral

1

2πi

∮
γ
f(z) dz, (4.1)

define el residuo de f(z) en z0,

Res f(z)|z=z0
≡ 1

2πi

∮
γ
f(z) dz . (4.2)

Esta definición se extiende también a puntos regulares de la función, siendo el residuo nulo
en ese caso por el teorema de Cauchy.

Ejemplo: Residuos y f́ısica de fluidos

F́ısicamente, el valor del residuo determina la importancia de la singularidad. Con-
sideremos por ejemplo el caso del fluido en dos dimensiones analizado en la Sección
1.11.1. Como vimos alĺı, la función de variable compleja f(z) asociada al movimiento
solenoidal e irrotacional de dicho fluido es completamente regular. La introducción
de fuentes, sumideros o vórtices da lugar a violaciones de las condiciones de Cauchy-
Riemann y, por tanto, del carácter holomorfo de f(z). El residuo de la función en ese
punto caracteriza precisamente la intensidad de la violación. En particular, dada una
curva cerrada γ en torno a una singularidad aislada z0, la separación de la ecuación
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(4.2) en partes reales e imaginarias implica∮
γ
(u dx− v dy) = −2π Im Res f(z)|z=z0

,∮
γ
(u dy + v dx) = 2πRe Res f(z)|z=z0

.

Expresando estas integrales de contorno en términos de las componentes del campo de
velocidades identificadas en la Sección 1.11.1, u(x, y) = Vx(x, y) y v(x, y) = −Vy(x, y),
obtenemos las relaciones∮

γ
(Vx dx+ Vy dy) =

∮
γ
V⃗ · τ⃗ ds = −2π Im Res f(z)|z=z0

,∮
γ
(Vx dy − Vy dx) =

∮
γ
V⃗ · n⃗ ds = 2πRe Res f(z)|z=z0

,

con τ⃗ y n⃗ los vectores tangente y normal a la curva γ. La parte imaginaria del residuo
resulta, por tanto, proporcional a la intensidad del vórtice en z = z0, con el signo del
mismo indicando la dirección de rotación. La parte real del residuo es, por otro lado,
proporcional a la intensidad de emisión de la fuente o absorción del sumidero, según
el signo del mismo.

4.2 Teorema de los residuos

Consideremos ahora la integración de una función de variable compleja f(z) a lo largo de una
curva cerrada γ que rodea un número finito m de singularidades aisladas zj (j = 1, . . . ,m).
Encerrando cada una de estas singularidades en el interior de una serie de circunferencias γj
conectadas a γ mediante pares de segmentos infinitesimalmente próximos, podemos recorrer
el contorno de integración de manera conexa, es decir, sin atravesar puntos singulares de f(z).
Haciendo coincidir la dirección de integración en cada circunferencia γj con la de la curva γ,
la integral sobre γ se convierte en una integral sobre todas las “̀ıslas” contenidas en esta,

∮
γ
f(z) dz =

m∑
j=1

∮
γj

f(z) dz = 2πi
m∑
j=1

Res f(z)|z=zj

(4.3)

donde en el último paso hemos hecho uso de la definición (4.2). Esta fórmula aparentemente
trivial constituye el llamado Teorema de los Residuos, un resultado de alcance extraordinario
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que, como veremos en la sección 4.4, nos permitirá calcular integrales definidas dif́ıcilmente
abordables por métodos tradicionales de variable real. Pero antes de eso, veamos como cal-
cular residuos de manera eficiente.

4.2.1 Residuos de polos de orden n mediante ĺımites y derivadas

Como vimos en la sección 3.4.2, si z = z0 es un polo de orden n, la función f(z) en un entorno
de z0 puede escribirse como

f(z) =
g(z)

(z − z0)n
, (4.4)

con g(z) una función regular y no nula en z0. Teniendo en cuenta la representación integral
(2.38), esto implica que

Res f(z)|z=z0 =
1

2πi

∮
γ

g(z)

(z − z0)n
dz =

1

(n− 1)!

dn−1

dzn−1
g(z)z=z0 , (4.5)

o equivalentemente

Res f(z)|z=z0 =
1

(n− 1)!
lim
z→z0

dn−1

dzn−1
[(z − z0)nf(z)] , (polo de orden n) , (4.6)

con γ una curva en torno a z0. Esta expresión proporciona un método útil para calcular
los residuos asociados a singularidades de tipo polar, tomando una forma particularmente
sencilla para polos simples,

Res f(z)|z=z0
= lim

z→z0
(z − z0)f(z) , (polo simple) . (4.7)

Si dicho polo simple surge además de un cociente

f(z) =
p(z)

q(z)
, (4.8)

con q (z0) = 0, podemos escribir el residuo como

Res f(z)|z=z0
= lim

z→z0

(z − z0)p(z)
q(z)

= lim
z→z0

(z − z0)
q(z)− q (z0)

p(z) , (4.9)

o equivalentemente

Res f(z)|z=z0
=
p (z0)

q′ (z0)
, (polo simple) . (4.10)
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Ejemplo: Residuos de f(z) = z2−2z
(z+1)2(z2+4)

La función f(z) tiene un polo doble en z = −1 y dos polos simples en z = ±2i.
Teniendo en cuenta la expresión (4.6), el residuo en z = −1 está dado por

Res f(z)|z=−1 =
1

1!
lim

z→−1

d

dz

[
(z + 1)2

z2 − 2z

(z + 1)2(z2 + 4)

]
= −14

25
.

Análogamente, los residuos en z = ±2i son respectivamente

Res f(z)|z=+2i = lim
z→2i

[
(z − 2i)

z2 − 2z

(z + 1)2(z − 2i)(z + 2i)

]
= − 4 + 4i

(2i+ 1)2(4i)
=

7 + i

25
,

Res f(z)|z=−2i = lim
z→−2i

[
(z + 2i)

z2 − 2z

(z + 1)2(z − 2i)(z + 2i)

]
= − 4− 4i

(−2i+ 1)2(−4i)
=

7− i
25

.

4.2.2 Residuos de polos de orden n mediante la serie de Laurent

Si una función f(z) tiene una singularidad aislada en z0 y es holomorfa en un anillo en torno
a dicho punto, podemos realizar un desarrollo de la misma en serie de Laurent. Al examinar
la expresión para los coeficientes an en (3.23), observamos en particular que el coeficiente a−1

proporciona directamente el residuo de la función

a−1 =
1

2πi

∮
γ
f(z)dz ≡ Res f(z)|z=z0

. (4.11)

4.2.3 Residuos en el infinito

Para estudiar el residuo de una función en el infinito, construiremos una curva de Jordan γ∞
encerrando todas las singularidades finitas de la función y recorrida en sentido antihorario.
Reinterpretando dicha curva como una curva −γ∞ en torno a z = ∞ recorrida en sentido
horario (es decir, con el infinito a su izquierda o interior), podemos escribir

Res f(z)|z=∞ =
1

2πi

∮
−γ∞

f(z)dz = − 1

2πi

∮
γ∞

f(z)dz . (4.12)

Para evaluar esta integral, realizamos el cambio de variable compleja z = 1/ζ introducido
en la sección 3.4.4. Bajo esta transformación conforme, el punto al infinito se convierte en
ζ = 0, y la curva γ∞ se transforma en una curva γ0 en torno al origen, pero recorrida en
sentido opuesto, es decir γ∞ se transforma en −γ0. Teniendo en cuenta además que

dz

dζ
= − 1

ζ2
, (4.13)
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obtenemos finalmente

Res f(z)|z=∞ = − 1

2πi

∮
γ0

f

(
1

ζ

)
dζ

ζ2
= Res f(z)|z=∞ = − Res

{
f

(
1

ζ

)
1

ζ2

}∣∣∣∣
ζ=0

,

(4.14)

con γ0 orientada en sentido antihorario.

Ejemplo: Residuo de f(z) = 1
z en el infinito

Existen funciones de variable compleja que, aun siendo regulares en el infinito, tienen
un residuo no nulo en dicho punto. Por ejemplo, aunque la función f(z) = 1/z tiene
un único punto singular en z = 0 con residuo

a−1 = Res f(z)|z=0 = 1 ,

su residuo en el punto regular z =∞ (ζ = 0, f(1/ζ) = ζ) es no nulo,

Res f(z)|z=∞ = − Res

{
f

(
1

ζ

)
1

ζ2

}∣∣∣∣
ζ=0

= −1 .

Nótese que la suma de ambos residuos es identicamente cero.

Nótese que las consideraciones de la sección anterior se aplican también al residuo en el
infinito. En particular, si una función f(z) admite un desarrollo en serie de Laurent en un
anillo circular r < |z| <∞, con r apropiado,

f(z) =

∞∑
k=−∞

akz
k = · · ·+ a−3

z3
+
a−2

z2
+
a−1

z
+ a0 + a1z + a2z

2 + a3z
3 + · · · , (4.15)

tenemos

f

(
1

ζ

)
1

ζ2
= · · ·+ a−3ζ + a−2 +

a−1

ζ
+
a0
ζ2

+
a1
ζ3

+ · · · , (4.16)

y, por tanto,

Res f(z)|z=∞ = −a−1. (4.17)

En otras palabras, el residuo de una función f(z) en z = ∞ coincide con el opuesto del
coeficiente de 1/z en el desarrollo asintótico de f(z) alrededor de z =∞.

4.3 Suma de todos los residuos

El ejemplo de la sección anterior ilustra un resultado complemetamente general y de gran
utilidad práctica. Consideremos una función f(z) holomorfa en todo el plano complejo ex-
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cepto en un número finito de singularidades aisladas incluyendo potencialmente el punto en
el infinito. Dada una curva de Jordan γ, orientada positivamente y no atravesando ninguna
singularidad, los resultados de la sección anterior nos permiten expresar la correspondiente
integral de camino en términos de los residuos interiores a la curva,∮

γ
f(z) dz = 2πi

∑
internos

Res f(z) , (4.18)

o alternativamente en términos de los residuos exteriores a ella, incluido el punto en el infinito,∮
γ
f(z) dz = −2πi

∑
externos

Res f(z) . (4.19)

La suma de todos los residuos, tanto internos como externos a la curva, es, por tanto, nula,

∑
total

Res f(z) = 0 . (4.20)

4.4 Cálculo de integrales definidas

La aplicación del teorema de los residuos (4.3) se extiende de manera significativa al cálculo
de integrales definidas de funciones reales a lo largo del eje real. Dicho cálculo involucra no
solo la determinación de una función de variable compleja adecuada, sino también la elección
ingeniosa de una trayectoria cerrada. En la práctica, los tipos más comunes son los siguientes:

1. Integrales de funciónes racionales de senos y cosenos sin singularidades en el ćırculo
x2 + y2 = 1,

I1 =

∫ 2π

0
R(cos θ, sin θ) dt . (4.21)

2. Integrales de función racionales de variable real R(x) sin singularidades en el eje real y
tal que lim|x|→∞ xR(x) = 0.

I2 =

∫ +∞

−∞
R(x) dx . (4.22)

3. Integrales de tipo Fourier

I3 =

∫ +∞

−∞
f(x)


e±ix

cosmx

senmx

 dx . (4.23)

4. Integrales de diversa ı́ndole con contornos especiales.

A continuación analizamos cada uno de estos casos en detalle.
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4.4.1 Integrales con senos y cosenos

Consideremos una integral de la forma

I1 =

∫ 2π

0
R(cos θ, sin θ) dt (4.24)

con R(x, y) una función racional (cociente de dos polinomios) sin singularidades en el ćırculo
x2 + y2 = 1. Parametrizando la circunferencia unitaria en el plano complejo por z = eiθ con
0 ≤ θ < 2π y teniendo en cuenta que

cos θ =
1

2

(
eiθ + e−iθ

)
=

1

2

(
z +

1

z

)
, sin θ =

1

2i

(
eiθ − e−iθ

)
=

1

2i

(
z − 1

z

)
(4.25)

dz = ieiθdθ = izdθ , dθ =
1

iz
dz , (4.26)

podemos interpretar I1 como una integral de contorno sobre el ćırculo |z| = 1 de una nueva
función R̃(z),

I1 =

∮
|z|=1

1

iz
R

(
1

2

(
z +

1

z

)
,
1

2i

(
z − 1

z

))
dz =

∮
|z|=1

R̃(z)dz . (4.27)

Puesto que R es una función racional, R̃(z) es también racional, y, por tanto, holomorfa en
todo el plano complejo, salvo en un número finito de polos dentro o fuera del ćırculo |z| = 1,
pero no en él 1 Por el teorema de los residuos tenemos, por tanto,

I1 = 2πi
∑

|zp|<1

Res R̃(z)

∣∣∣∣∣∣
z=zp

, (4.28)

con la suma extendida a todos los polos zp dentro del ćırculo de radio unitario.

Ejemplo:
∫ 2π
0

cos 3θ
5−4 cos θdθ

Introduciendo z = eiθ y teniendo en cuenta las relaciones (4.25) y (4.26) podemos
escribir

cos 3θ =
e3iθ + e−3iθ

2
=
z3 + z−3

2
,

1Nótese que una singularidad en la circunferencia |z| = 1 implicaŕıa una singularidad de R(x, y) en x2+y2 =
1, contradiciendo las suposiciones realizadas.
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y ∫ 2π

0

cos 3θ

5− 4 cos θ
dθ =

∮
|z|=1

(
z3 + z−3

)
/2

5− 4 (z + z−1) /2

dz

iz
= − 1

2i

∮
|z|=1

1 + z6

z3(2z − 1)(z − 2)
dz .

El integrando de esta expresión presenta un polo triple en z = 0, un polo simple
z = 1/2 y un polo simple en z = 2. De estos, solo el polo triple y el polo simple
en z = 1/2 están en el interior de la circunferencia |z| = 1. Teniendo en cuenta la
expresión (4.6), los correspondientes residuos están dados por

Res

[
z6 + 1

z3(2z − 1)(z − 2)

]
z=0

=
1

2!
lim
z→0

d2

dz2

[
z3

z6 + 1

z3(2z − 1)(z − 2)

]
=

21

8
,

Res

[
z6 + 1

z3(2z − 1)(z − 2)

]
z=1/2

= lim
z→1/2

[(
z − 1

2

)
z6 + 1

z3(2z − 1)(z − 2)

]
= −65

24
.

Por el teorema de los residuos, tenemos, por tanto, que∫ 2π

0

cos 3θ

5− 4 cos θ
dθ = − 1

2i

∮
ΓL

z6 + 1

z3(2z − 1)(z − 2)
dz = − 1

2i
(2πi)

[
21

8
− 65

24

]
=

π

12
.

4.4.2 Integrales a lo largo de todo el eje real

Consideremos ahora integrales de la forma

I2 =

∫ +∞

−∞
R(x)dx , (4.29)

con R(x) una función racional de variable real sin singularidades en el eje real y tal que

lim
|x|→∞

xR(x) = 0 (criterio de convergencia) . (4.30)

Interpretando (4.29) como el ĺımite L → ∞ de una integral I2(L) definida en un segmento
entre −L y L,

I2 = lim
L→∞

∫ +L

−L
R(x)dx = lim

L→∞
I2(L) , (4.31)

y complejizando R(x) mediante la sustitución del argumento real x por una variable compleja
z = x+ iy, obtenemos una integral ∫

R(z) dz (4.32)

con R(z) una función racional (cociente de dos polinomios) convergente en todo el plano
complejo,

lim
|z|→∞

zR(z) = 0 , (4.33)
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y conteniendo potencialmente un número finito de singularidades de tipo polar en puntos zk
fuera del eje real. Para aplicar el teorema de los residuos elegimos un camino cerrado ΓL

en el plano complejo compuesto del segmento entre −L y L y una semicircunferencia CL de
radio L en el semiplano superior, como se muestra en la figura.

El valor del radio L se asume lo suficientemente grande como para que todos los polos en el
semiplano superior Im z > 0 estén contenidos en el interior de ΓL, permitiéndonos escribir∮

ΓL

R(z) dz = I2(L) +

∫
CL

R(z) dz = 2πi
∑

Im zk>0

ResR(z)|z=zk . (4.34)

Teniendo en cuenta que la combinación del teorema de Darboux y el criterio de convergencia
(4.33) garantiza que la contribucion sobre el arco CL se anule en el ĺımite L→∞,∣∣∣∣∫

CL

R(z)dz

∣∣∣∣ ⩽ πL sup
z∈CL

|R(z)| −→ lim
L→∞

∫
CL

R(z) dz = 0 , (4.35)

obtenemos finalmente

I2 = lim
L→∞

∮
ΓL

R(z) dz = 2πi
∑

Im zk>0

ResR(z)|z=zk . (4.36)

Ejemplo:
∫∞
0

dx
x6+1

Usando el hecho de que el integrando es par, podemos reescribir la integral buscada
como una integral entre −∞ e ∞,∫ ∞

0

dx

x6 + 1
=

1

2

∫ ∞

−∞

dx

x6 + 1
.
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El integrando de la correspondiente expresión de variable compleja∮
ΓL

dz

z6 + 1
=

∫ L

−L

dx

x6 + 1
+

∫
CL

dz

z6 + 1
,

presenta polos simples (z6 + 1 = 0) en z = eπi/6, e3πi/6, e5πi/6, e7πi/6, e9πi/6, e11πi/6.
De todos estos, solo los polos en eπi/6, e3πi/6 y e5πi/6 están dentro del contorno ΓL.
Identificando R(z) = 1/(z6 + 1) y utilizando la regla de L’Hôpital, obtenemos

ResR(z)|z=eπi/6 = lim
z→eπi/6

[
(z − eπi/6) 1

z6 + 1

]
= lim

z→eπi/6

1

6z5
=

1

6
e−5πi/6 ,

ResR(z)|z=e3πi/6 = lim
z→e3πi/6

[(
z − e3πi/6

) 1

z6 + 1

]
= lim

z→e3πi/6

1

6z5
=

1

6
e−5πi/2 ,

ResR(z)|z=e5πi/6 = lim
z→e5πi/6

[(
z − e5πi/6

) 1

z6 + 1

]
= lim

z→e5πi/6

1

6z5
=

1

6
e−25πi/6 ,

y, por tanto, ∮
ΓL

dz

z6 + 1
= 2πi

[
1

6
e−5πi/6 +

1

6
e−5πi/2 +

1

6
e−25πi/6

]
=

2π

3
.

Teniendo en cuenta que la contribución de la integral sobre la circunferencia CL se
anula cuando L→∞, obtenemos

lim
L→∞

∫ L

−L

dx

x6 + 1
=

∫ ∞

−∞

dx

x6 + 1
=

2π

3
, −→

∫ ∞

0

dx

x6 + 1
=
π

3
.

4.4.3 Integrales de tipo Fourier

Consideremos ahora una integral de tipo Fourier

I3 =

∫ +∞

−∞
f(x) eix dx , (4.37)

donde asumimos que la extensión compleja f(z) es holomorfa en el semiplano Im z ⩾ 0,
excluyendo a lo sumo un número finito de singularidades fuera del eje real. Al igual que en
el caso anterior intepretaremos (4.37) como el ĺımite L → ∞ de una integral I3(L) definida
en un segmento entre −L y L,

I3 = lim
L→∞

∫ +L

−L
f(x) eixdx = lim

L→∞
I3(L) , (4.38)

Promoviendo de nuevo el integrando al plano complejo mediante la sustitución del argumento
real x por una variable compleja z = x+ iy y eligiendo un camino cerrado ΓL compuesto por
el segmento entre −L y L y una semicircunferencia CL de radio L en el semiplano superior,
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podemos escribir∮
ΓL

f(z)eiz dz = I3(L) +

∫
CL

f(z)eiz dz = 2πi
∑

Im zk>0

Res
[
f(z)eiz

]
z=zk

. (4.39)

Utilizando el teorema de Darboux y la simetŕıa de la función sin θ respecto a θ = π/2,
podemos expresar el valor absoluto de la integral sobre CL en un intervalo 0 ⩽ θ1 ⩽ θ2 ⩽ π
en función del supremo de |f

(
Leiθ

)
| en dicho arco, M(L) = supz∈CL

|f(z)|,∣∣∣∣∫
CL

f(z)eizdz

∣∣∣∣ = ∣∣∣∣∫ θ2

θ1

f(Leiθ)eiLe
iθ
iLeiθdθ

∣∣∣∣ ⩽ ∫ θ2

θ1

|f(Leiθ)|Le−L sin θdθ ⩽M(L)

∫ θ2

θ1

Le−L sin θdθ

⩽M(L)

∫ π

0
Le−L sin θdθ = 2M(L)

∫ π
2

0
Le−L sin θdθ .

(4.40)
Teniendo ahora en cuenta que la función sin θ está comprendida entre la cuerda y = 2θ/π y
la tangente y = θ,

2θ

π
⩽ sin θ ⩽ θ , (4.41)

podemos escribir∫ π
2

0
re−L sin θdθ ⩽

∫ π
2

0
re−

2
π
rθdθ =

π

2

∫ L

0
e−xdx =

π

2

(
1− e−L

)
⩽
π

2
, (4.42)

acotando con ello el valor de la integral sobre CL,∣∣∣∣∫
CL

f(z)eizdz

∣∣∣∣ ⩽ πM(L) (4.43)

Por tanto, si M(L) tiende a cero cuando L→∞, tenemos

I3 = lim
L→∞

∮
ΓL

f(z)eizdz = 2πi
∑

Im zk>0

Res
[
f(z)eiz

]
z=zk

. (4.44)

La demostración anterior incluye la prueba del llamamdo lema de Jordan.
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Dada una función f(z) definida en el semiplano superior con Im z > 0 y lim|z|→∞ f(z) =
0 uniformemente con respecto al ángulo en un sector 0 ⩽ θ1 ⩽ arg z ⩽ θ2 ⩽ π, entonces∫

CL

f(z)eizdz −→
L→∞

0 , (4.45)

con CL el arco de la circunferencia en dicho sector. Análogamente, si lim|z|→0 f(z) = 0,
entonces ∫

CL

f(z)eizdz −→
L→0

0. (4.46)

Lema de Jordan

Elección del contorno de integración

Nótese que si la integral de tipo Fourier involucra una exponencial con coeficiente
negativo,

I∗3 =

∫ +∞

−∞
f(x)e−ixdx , (4.47)

es necesario cerrar el contorno de integración por el semiplano inferior Im z < 0, ya que
el término e−iz con z complejo diverge en el semiplano superior. De manera general,
en presencia de un factor eαz con α complejo, es necesario considerar el semiplano
para el cual |eαz| ⩽ 1.

Ejemplo:
∫∞
0

cosx
x2+1

dx

Usando el hecho de que el integrando es par, podemos reescribir la integral buscada
como una integral entre −∞ e ∞,∫ ∞

0

cosx

x2 + 1
dx =

1

2

∫ ∞

−∞

cosx

x2 + 1
dx .

Teniendo en cuenta ahora que esta expresión corresponde a la parte real de una función
eiz/

(
z2 + 1

)
y escogiendo un contorno de integración ΓL en el semiplano superior,

podemos escribir∮
ΓL

eiz

(z2 + 1)
dz =

∫ L

−L

eix

x2 + 1
dx+

∫
CL

eiz

z2 + 1
dz = 2πi

∑
Im zk>0

Res

[
eiz

(z2 + 1)

]
z=zk

.

El integrando en esta ecuación tiene 2 polos simples en z = ±i, pero solo uno de ellos,
z = i, está en el interior de ΓL. Teniendo en cuenta (4.7), el correspondiente residuo
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está dado por

Res

[
eiz

(z2 + 1)

]
z=i

= lim
z→i

[
(z − i) eiz

(z − i)(z + i)

]
=

1

2 e i
.

Tenemos, por tanto, que∫ L

−L

eix

x2 + 1
dx+

∫
CL

eiz

z2 + 1
dz = 2πi

1

2 e i
=
π

e
,

y por ende ∫ L

−L

cosx

x2 + 1
dx+ i

∫ L

−L

senx

x2 + 1
dx+

∫
CL

eiz

z2 + 1
dz =

π

e
.

Puesto que la integral sobre CL tiende a cero cuando L→∞, esto implica∫ ∞

0

cosx

x2 + 1
dx =

π

2e
,

∫ ∞

0

sinx

x2 + 1
dx = 0 .

4.4.4 Integrales con polos simples en el camino de integración

4.4.5 Integrales de funciones poĺıdromas
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