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CHAPTER 1

NUMEROS COMPLEJOS Y FUNCIONES HOLOMORFAS

El numero imaginario es un recurso sutil y maravilloso del espiritu divino, casi
un anfibio entre el ser y el no ser.

LEIBNITZ

Cliertas ecuaciones algebraicas sdlo tienen solucion en nuestra imaginacion.

RENE DESCARTES

Los nimeros complejos aparecen por primera vez en los trabajos de Cardano y Bombelli
sobre el célculo de las raices de la ecuacién de tercer grado 23 +1 = 0, siendo usados con recelo
hasta finales del siglo XVIII cuando Gauss les concede un lugar privilegiado en el Olimpo de
las Matemaéticas mediante la prueba del Teorema Fundamental del Algebra.

La extension del sistema de niimeros reales al sistema de ntimeros complejos es importante

no solo en el campo de las matematicas, donde su uso es comtn en casi todas las dreas, sino
también en el ambito de la fisica:

1. Analisis de Vibraciones Mecanicas y Ondas: La variable compleja se utiliza para
estudiar sistemas vibracionales, como osciladores armoénicos amortiguados, y soluciones
de ondas planas y esféricas.

2. Electromagnetismo y Dinamica de Fluidos: Diversas situaciones en electromag-
netismo y fisica de fluidos involucran la llamada ecuacion de Laplace

_ *P(zy) N PP(a.y)
- Oa? Oy?

V2 =0 (1.1)
para pares de funciones u y v. Una de estas funciones podria corresponder, por ejem-
plo, con un potencial electrostatico bidimensional, mientras que la otra, que genera
una familia de curvas ortogonales a la primera, podria describir el campo eléctrico E.
Alternativamente, la primera funcién podria describir el potencial de velocidades de un
fluido irrotacional, mientras que la segunda corresponderia a la funcién de flujo.

3. Analisis de Circuitos Eléctricos: La impedancia en circuitos de corriente alterna
se representa mediante nimeros complejos, lo que facilita el andlisis de tensiones y
corrientes.



1.1 Propiedades basicas 3

4. Optica: La propagacion de la luz a través de medios con diferentes indices de refraccién
se puede describir mediante ecuaciones diferenciales en variable compleja.

5. Teoria de la Elasticidad: Las transformaciones de coordenadas complejas son ttiles
para resolver problemas en cuerpos sélidos deformables.

6. Mecanica Cuantica: La mecédnica cuantica hace un amplio uso de la variable compleja
en la descripcién de las funciones de onda y los operadores hermiticos.

7. Teoria de la Relatividad General: La complejizacion de soluciones de las ecuaciones
de Einstein es una poderosa herramienta para extender las regiones en la que estas son
vélidas (continuacién analitica).

8. Fisica de Particulas: Las integrales en el plano complejo juegan un papel fundamental
en la formulacién de propagadores en teoria cuantica de campos.

9. Problemas de Transferencia de Calor: Las transformaciones conformes y la vari-
able compleja se aplican para resolver ecuaciones de calor en geometrias complicadas.

10. Problemas de Difusion y Transporte: La variable compleja se aplica en problemas
de difusién de particulas y transporte de calor en medios heterogéneos. Ademas, la
ecuacion de Helmholtz se convierte en una ecuacion de difusién mediante la comple-
jizacién de un parametro real, transformando, por tanto, funciones de Bessel y funciones
de Bessel esféricas en funciones de Bessel modificadas y funciones de Bessel esféricas
modificadas.

1.1 Propiedades basicas

La extension del sistema de niimeros reales al sistema de niimeros complejos estd basada en
la existencia de una unidad imaginaria v y una regla algebraica

i2=—1. (1.2)

La etiqueta imaginaria refleja la naturaleza estrictamente matematica de esta cantidad:
ninguna experiencia fisica produce como resultado una medicién de i.

Combinando aritméticamente la unidad imaginaria ¢ y los nimeros reales ordinarios,
obtenemos el conjunto de los ntimeros complejos, denotado tradicionalmente con el simbolo C,
en analogia con la notacién R para ntimeros reales. Un ntimero complejo z estd determinado
de manera tnica por la expresién’

z=x+ 1y, z,y € R, (1.3)

'Es habitual representar los nimeros complejos con las letras z y w, reservando las letras ., y, u, v para los
numeros reales.
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con x e y un par de ntmeros reales llamados parte real y parte imaginaria de z.
Rez==z, Imz=y. (1.4)

Dicha representacién se conoce como forma binomial o cartesiana del nimero complejo z.
Es importante notar que la relacién i2 = —1 no permite escribir directamente i = v/—1. De

hecho, el uso inocente de esta ltima expresién puede dar lugar a inconsistencias del tipo
1= =ii=v-1V-1=/(-1)(-)=vV1=1 — 1=-1.

El error se debe obviamente a qué estamos interpretando —1 como un numero real, a pesar
de que los nimeros reales negativos no tienen raiz cuadrada real. En otras palabras, estamos
usando las raices de nimeros complejos sin haberlas definido previamente, dando por supuesto
que estas satisfacen las mismas propiedades que las raices de ntimeros reales positivos. Sin
embargo, como veremos mas adelante, la igualdad /z1,/22 = /2122, vélida para z1, 22 € RT,
no es cierta en general para z1, 2o € C.

Ejemplo: Parte real e imaginaria de z =2 — 5i

La parte real del niimero complejo z = 2 — 5¢ es 2. Lo escribimos como Rez = 2. La
parte imaginaria de z es —5. Lo escribimos como Im z = —5

Dos nimeros complejos z1 = x1 +iy1 y 20 = T2 + iy son iguales si y solo si sus partes reales
e imaginarias también lo son,

T1 = To, Rez1 = Rezo, (1.5)

Y1 = Y2, Imz; =Imzy.

Si la parte imaginaria de un nimero complejo es cero, Im(z) = 0, decimos que z es puramente
real. Por el contrario, si la parte real es Re(z) = 0, nos referimos a z como puramente
1MaAginario o "imaginario puro.

Puesto que C es isomorfo a R?, los niimeros x e y se corresponden con las coordenadas
cartesianas ortogonales de un punto en el plano. Es, por tanto, comin visualizar los niimeros
complejos en el llamado plano complejo, plano de Gauss o plano de Argand. El eje horizontal
recibe el nombre de eje real, y el eje vertical recibe el nombre de eje imaginario.

Las operaciones con nimeros complejos se realizan utilizando las reglas aritméticas habit-
uales, pero teniendo siempre en cuenta la propiedad (1.2). Por ejemplo, dados dos nimeros
complejos z1 = x1 + Y1 ¥ 22 = X2 + Y2, su suma y multiplicaciéon estan dadas por

21+ 22 = (z1 +22) + 1 (Y1 +y2), 21 - 2o = (x122 — Y1y2) + 4 (T1Y2 + T2Y1) -

(1.7)
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La adicién y resta de ntimeros complejos se corresponde exactamente con la adicion y resta
de vectores en el plano. Nétese, sin embargo, que la multiplicacién de niimeros complejos no
se corresponde con ninguna operacién de vectores estandar.?

| el Sy s 62 6420 5 L0

(3+4i) + (1+2i) = 4+6i.
(3+4i)- (14+2)=3-1-4-2)+i(3-2+4-1) = -5+ 10i.

Aparte de lo anterior, no se producen cambios sustanciales en la estructura algebraica de
los nimeros complejos en comparacion con los nimeros reales. En particular, la unidad
multiplicativa sigue siendo la unidad real 1, el elemento neutro aditivo coincide con el cero
real 0, existen elementos inversos aditivos y multiplicativos

214+ (—21) =0, izt =1, (1.8)

y
21+ 20 =20+ 21, (Commutatividad de la adicién) (1.9)
214 (22 + 23) = (21 + 22) + 23, (Asociatividad de la adicién) (1.10)
Z129 = 2221 , (Commutatividad dl prducto) (1.11)
z1(z023) = (2122)23 , (Asociatividad del producto) (1.12)
21(z2 + 23) = 2122 + 2123, (Distributividad) . (1.13)

para todo z1, 22, 23 € C. En general, cualquier conjunto que satisfaga las propiedades ante-
riores se denomina cuerpo. En particular, decimos que el cuerpo C contiene una copia del
cuerpo real, R x — x +1:0 € C.

»

=u + v,

1

Escribiendo z =z 411y y 2~
227t = (zu—yv) +i(zv +yu) =1,

e igualando partes reales e imaginarias, tenemos
€z Y

U=—7>, V= ——F">5
x2—|-y2 332+y2’
y por tanto
-1 & Y

= =1 . 1.14
2+ 2t (1.14)

2De hecho, no puede hacerlo, puesto que no existe un concepto de inverso multiplicativo para los productos
escalar y vector usuales.
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1.2 Representaciéon matricial

Un nimero complejo z = = + iy se puede representar alternativamente como una matriz 2 x 2

de la forma
T =y
y x )

En esta representacién, las identidades aditivas y multiplicativas son la matriz cero y la matriz
identidad y la suma y la multiplicacién de niimeros complejos se realizan siguiendo las reglas
usuales para la suma y multiplicacion de matrices. En resumen, la aritmética es la misma
que en la seccion anterior, pero expresada ahora en formato matricial,

<331 —y1)+< T3 —yz>:<$1+ﬂ$2 —yl—y2>

Y1 T —Y2 T2 y1+y2 T+ @2 ’

< T~y ) ‘ < T2 Y2 ) _ ( w122 = y1y2 — (122 + T192) )
y1 11 Y2 T2 YiT2 + T1Y2  T1T2 — Y1Y2 )

En esta notacién, la unidad imaginaria se corresponde con la matriz

<(1) —01> (1.16)
COED-)

Un nimero complejo admite, por tanto, la descomposicién
r =y \ _ 1 0 0 —1
(2 )= O)un(S ). 019

1.3 Complejo conjugado

(1.15)

la cual verifica [i? = —1]

Dado un niimero complejo z = x + iy, el nimero complejo
Z=x—1y (1.19)
se denomina el complejo conjugado de z, siendo también utilizada la notacién alternativa z*

para la misma cantidad. En términos del plano complejo, esta operacién se corresponde con
una reflexiéon con respecto al eje real.
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Algebraicamente, tenemos ademés

— 1 1
zZ=2z, Rez=§(z+§), Imzzﬁ(z—i), (1.20)

21+ 2 =71 + 72, Z1%2 = 2122 2120 = Z1/%Z2 (22 #0), (1.21)

2

con 21,29 € C.

Dados dos ntimeros complejos z; = —7 + 67 y 20 = 4 — 94, tenemos

7 =—7—6i, ZH=4+9.

La suma y el producto de estos ntimeros coincide exactamente el conjugado de la suma
21 + 29 = —3 — 3¢ y el conjugado del producto z; - zo = 26 + 877,

Zi+Z=(—-7—06i)+ (4+9) =-3+3i,

%73 = (=7 —6i) - (44 9i) = 26 — 87i.

El complejo conjugado permite calcular divisiones de manera eficiente. En particular, dados
dos numeros z; = x1 + Y11 por zo = Ty + Yoi, con Ta, yo # 0, tenemos

A m +iyr w2 — iy _ T1%2 + y1y2 n [t — Tye (1.22)

z2 X2+ 1Yy2 T2 — Y2 iU% + y% iU% + y%

2%

243  (2+3i)(4—d) 114+10i 11 , 10

1+i  (d+i)4—1i) AR AR
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1.4 Moébdulo

Al contrario de lo que ocurre con ntimeros reales, no podemos definir una relacién de orden
< en C compatible con la estructura algebraica. En otras palabras, es imposible definir un
concepto de niimero complejo positivo en el que la suma y el producto de nimeros complejos
positivos sigan siendo positivos. Podemos, sin embargo, introducir el concepto de médulo de
un numero complejo

|z] = |z +iy| = Va2 + y? = Vz2z, (1.23)

con propiedades similares al valor absoluto de un ntimero real. Se tiene en particular que

‘Z|:‘§|> zE:‘Z‘Q, —]2|§Rez, Imz < ’2‘7 (1'24)
y
|z122| = |21]|22] , |21/ 22| = |21]/| 22| (22 #0),
21+ 22| < |21| + |22] [[21] = |22]| < 21 — 22], (1.25)
/121 — 22| < 1/(|21] — |22]) (|21] > |22])

para z1, zo € C. Puesto que un numero real x se puede considerar como un nimero complejo
con parte imaginaria nula, las definiciones de médulo, ya sea como numero real o como
numero complejo, son consistentes entre si,

2] = Va2 = Va2 + 02 = |z + 0], z€R, (1.26)

dando lugar a la nomenclatura de valor absoluto de un nimero complejo para referirse a su
médulo, como extensién del concepto de valor absoluto introducido en los niimeros reales.

D>

El ntimero complejo z; = 7 — 4i tiene médulo |z| = /72 + (—4)2 = V/65.

El niimero complejo w = 2 + i tiene médulo |z = v/22 + 12 = /5.

El ntimero complejo z +w = 9 — 3i tiene médulo |21 + 22| = /92 + (—=3)2 = /90.
Estas tres cantidades satisfacen la desigualdad triangular, |21 + 22| < |21 + |22/, en

concreto, v/90 < /65 + V5.

Puesto que
Z Kl
z-|— | =+—5=1, 1.27
(7) = i 120
el inverso z~! de z # 0 estd dado por Z/|z|%, que tiene la forma de un niimero complejo

-1 z T — 1y x Y
_Z _ .Y 1.28
TSR RE CREORR (1.28)

y coincide exactamente con (1.14).
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Nétese finalmente que la distancia Euclidea entre dos puntos (x1,y1), (z2,y2) se corresponde
con el médulo de la diferencia entre los niimeros complejos correspondientes,

|21 — 22| = \/(:rl —22)* + (y1 — )%, z1 =21+ iy - (1.29)

La topologia en C permite, por lo tanto, los conceptos de punto de acumulacién, punto
interior y punto exterior de un conjunto, asi como los conceptos de convergencia para una
sucesion o una serie.

1.5 Forma polar y argumento

La representacion geométrica de los ntimeros complejos permite introducir de manera nat-
ural la llamada forma polar o trigonométrica de un numero complejo. Considerando las
coordenadas polares en el plano,

x = |z|cos O . |z| = Va2 + y?,

(1.30)
y = |z|senf 0 = arctan(z/y),

obtenemos®

z = |z|(cos @ +isenb). (1.31)
En esta representacion el mddulo de z introducido anteriormente representa la longitud del

vector correspondiente a x + iy, v 0 es el angulo desde el eje positivo hasta el vector x + iy.
En términos matriciales esta expresién toma la forma

x -y '\ _ cosf) —send
(y z )_|Z|(sen9 cos 0 )’ (1.32)

< cosf) —senf > (1.33)

senf cosf

con

una matriz de rotacién asociada a un giro de dngulo 6 en sentido contrario a las agujas del
reloj.

Debido a la periodicidad de las funciones trigonométricas, el argumento de z estd deter-
minado por 8 salvo multiplos enteros de 27,

arg z = 60 + 2km, k=0,+1,£2,..., (1.34)

i.e. es multievaluado y, por tanto, no es una funciéon. Esto implica en particular que dos
nimeros complejos no nulos z1 y zo seran iguales si y solo si

|z1] = |22] y arg z1 = arg 2o (mod27) . (1.35)

3Aunque no la usaremos en este curso, es conveniente estar familiarizado con la notacién alternativa z =
|z| cis 8 = |z|(cos 6 + isen 0) usada en algunos libros clésicos.
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La restriccion del argumento de un nimero complejo a un intervalo semiabierto I de longi-
tud 27 se denomina determinacion del argumento, denotandose cominmente por arg;. Al
contrario que arg, arg; es univaluada y, por tanto, una funcién. La eleccién particular

Argz = arg(_, . 2 (1.36)

se conoce como determinacion principal del argumento y es una funcién discontinua a lo
largo del semieje real negativo. Notese que la aparicién de dicha discontinuidad es inevitable.
En particular, si hubiéramos considerado una determinacién alternativa del argumento en
el intervalo [0,27), nos encontrariamos con una discontinuidad en el eje real positivo. La
eleccién (—m, 7| viene motivada por la extensién a los complejos de algunas funciones reales,
como el logaritmo o las raices, para las cuales sera conveniente definir argumentos principales
que garanticen su continuidad en R*.

Ejemplo: —1 en forma polar y su argumento en diversos intervalos

—1=1-(cos(m + 2mk) + isen(w + 27k)),
arg(—1) = + 2wk, for k € Z.

Eligiendo diversos intervalos tenemos por ejemplo,

a‘rg[—ﬂ‘ﬂl’)(_l) =7, arg[O,Qﬂ')(_l) =TT, Arg(_l) = a‘rg(—ﬂ'ﬂr](_l) S Wo

1.6 Foérmulas de Euler y de De Moivre

Usando las expansiones de las funciones trigonométricas

cosf = i(—l)’C o senf = i(—l)kﬂ (1.37)
— (2k)!7 — 2k + 1)
para calcular
cosf + isenf = i ( )k o i (1.38)
ko()k ()%H 21<:+1 o
obtenemos la conocida como férmula de Euler
e = cosf + isenf, (1.39)

con 6 € R. Nétese que esta expresion es consistente con el reemplazo formal i <> —i en la
conjugacién compleja (1.19),

z=|zle® — zT=|zle7Y, (1.40)
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y de gran utilidad para realizar operaciones trigonométricas,
6i0 + e—z’@ 61’9 _ 6—i0
cos = ——— | senf) = ———— 1.41
2 2i ( )

y multiplicaciones y divisiones de niimero complejos, algo mas complicadas de llevar a cabo
en la representacién cartesiana. En particular, dados dos niimeros complejos z; = | 21|’ =
|21] (cos By + isenby) y zo = |22]e® = | 29| (cos O3 + isen fz) en representacién polar, tenemos

212 = |21]|2g] 1402 2 @ei(gl_(h). (1.42)
Z9 |Z2|
o alternativamente

2129 = |z1||22| (cos By + isen 01) (cos s + isen by)
= |21]||22] (cos 01 cos By — sen By sen O3 + i (cos O sen Hs + sen Oy cos 03)) (1.43)
= |z1]||22| (cos (61 + 62) + isen (61 + 62)) ,

lo cual es consistente con la primera propiedad en (1.25) y las reglas

arg (z122) = argz; +argza  (mod2m),

arg (Z—l) = —argz (mod2m), (1.44)
arg(z) = —arg z (mod2m),

arg (z1/z9) = argz; —argze (mod2m)

La interpretacién geométrica de la expresion (1.42) es evidente: el producto de dos nimeros
complejos es geométricamente un giro (se suman los argumento) seguido de una homotecia
(se multiplican los mdédulos).

Ademas, la ecuacién (1.39) nos permite obtener como caso particular la famosa identidad
de Euler

€T+ 1=0, (1.45)

una de las relaciones mas bellas en matematicas, involucrando simultaneamente la identidad
aditiva (0), la identidad multiplicativa (1), la constante del circulo fundamental (), el nimero
e =2.718... y la unidad imaginaria i.

Otro resultado importante es la llamada formula de De Moivre
cos(nf) + isen(nf) = (cos@ +isen )", (1.46)

con n € Z. Esta expresion se obtiene por induccién de la férmula de Euler (1.39). En
particular, asumiendo que la ecuacién (cosf + isen )™ = cos(n#) + isen(nf) es vélida para
algin entero positivo n, tenemos

(cos@ + isen )" = (cosf + isen )™ (cos @ + isenf) = (cosnf + isennf)(cos f + isen )
= (cosnf cos @ — sennf sen @) + i(cos nf sen 6 + sen nf cos )
=cos(n+1)0 + isen(n+1)6.
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Para n negativo, consideramos m = —n y reutilizamos el resultado que acabamos de de-
mostrar para los niimeros enteros positivos,
1 1 cosmb — i senmb

0 +isenf)" = = . = 0+i 0
(cos§ -+ isen6) (cosf +isenf)™  cosmb +imsenf cosmb —isenmb cosne +tsennd,

completando la demostracién para todos los enteros.

En términos geométricos, la férmula de De Moivre refleja el hecho de que n rotaciones de
dangulo 0 son equivalentes a una sola rotacion de dngulo nf,

( cosd —senf ) _ ( cos(nf) —sen(nf) ) _ (1.47)

senf)  cosf sen(nf)  cos(nh)

EETEETTRD))

Para calcular (—1 +7)?°, expresamos (—1 + i) en forma polar
—1+4i=/2(cos(3m/4) + isen(37w/4)),
y aplicamos la formula de De Moivre

(=1 4 0)%° = 229/2(cos(20 - 37/4) + isen(20 - 3w/4)) = 1024(cos T + isenw) = —1024 .

Combinada con la férmula binomial de Newton, valida también para los complejos,

n
(21 + 22)" Z < ) ZEk (1.48)

la formula de De Moivre permite obtener facilmente expresiones para los senos y cosenos de
los multiplos de un angulo.

| el Gl o ) iy o Ll e o)

Para expresar sen(50) como un polinomio en sen 6, aplicamos la férmula de De Moivre

(cos(50) + isen(50)) = (cos O + isen §)°
= cos® 0 + 5i cos* @ sen 6 — 10 cos® O sen? 6 — 10i cos® @ sen® 6 + 5 cos* @ sen 6 + i sen® 6
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e igualamos partes reales e imaginarias

sen(560) = 5 cos? #sen § — 10 cos? A sen® 6 4 sen® #
=5 (1 — sen? 9)2 senf — 10 (1 — sen? 0) 6 sen® 0 + sen® 0
= 5senf — 10sen®  + 5sen® @ — 10sen® § + 10sen® § + sen® 6
= 5senf — 20sen® H + 16sen’ 6.

1.7 El Teorema Fundamental del Algebra

Como probaremos en la Seccién 2.8, el Teorema Fundamental del Algebra establece que todo
polinomio con coeficientes complejos tiene por lo menos una raiz compleja. Consideremos la
ecuacién polinémica

2" 4+ 12"+ .. +arz+as=0 (1.49)

con coeficientes complejos ag, . . . a,. Dada una soluciéon z de esta ecuacién, Z satisface
"+ T 12" P 4. Fa@z+a=0. (1.50)

Esto demuestra que las raices no reales de una ecuacién polinémica con coeficientes reales
se presentan en pares conjugados complejos. Denotando las raices de (1.49) como z1, ...z,
podemos escribir dicha expresién en la llamada forma factorizada

an(z—21)(z—22)...(2 —2,) =0. (1.51)

1.7.1 Raices cuadradas
La raiz cuadrada z = x+1iy = /2 de cualquier ntiimero complejo zg = xo+iyo debe satisfacer
(z+iy)? =2 <+— 2°—y*=u, 2xy = yo . (1.52)
Combinando las dos ecuaciones obtenemos
a2+t = (362 — y2)2 + 4z?y? = (x2 + y2)2 , (1.53)

A partir de la primera ecuacién en el sistema, tenemos

1 1
x2:2<x0+\/1:(2)+y3> ; y2=§ <—$0+\/~’m> . (1.54)

Los signos de z y y al tomar la raiz cuadrada de las expresiones anteriores vienen determinados
por la segunda ecuacion en el sistema, 2zy = yo. En concreto tenemos

xo—i—\/x%%—y%_i_iﬂ —x0 + i + 2 yo # 0
%ol 2 ’ '

2

z=x+1y =T+ 1y ==L \/

(1.55)
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La raiz cuadrada de cualquier nimero complejo tiene, por tanto, dos valores opuestos, que
coinciden solo si xzg + iyg = 0. Notese que el caso yg = 0 se corresponde con las raices
cuadradas de nimeros reales. En concreto, tenemos

z=24x9g si x>0, z2=24iv/—x9g si wxp <0, yo=0. (1.56)
Estos resultados nos permiten resolver ecuaciones cuadraticas del tipo
az’? +bz+c=0, (1.57)

con coeficientes a,b,c € C y a # 0. De hecho, completando cuadrados, tenemos

al-+2 2—i(bz—zlac)—o (1.58)
2a 4a o ’

2= i <—b + /b2 — 4ac) = 0. (1.59)

1.7.2 Raices n-ésimas
Las raices n-ésimas de un numero complejo conocido zp son las soluciones de la ecuacion
polinémica
2" =z, (1.60)
con n un numero natural, n > 2. Escribiendo z y zy en forma polar,
z=|z|e, 20 = |20le®, (1.61)
y usando la férmula de De Moivre, podemos escribir (1.60) en la forma
n __ n_inf __ 6o
2" = |z"e™ = |zl . (1.62)
Aplicando ahora el criterio de igualdad de nimeros complejos en forma polar

0o+ 2kr 6y 2k
2" = |20, 9,;%:%@7”, k=0,41,42,... (1.63)

deducimos que

n

2k = /] 20| exp [2 (ff + %W)] : (1.64)

De acuerdo con esta expresién, existen n raices diferentes de z, contenidas todas ellas en

un circulo de radio |z| = {/|z0| centrado en el origen y separadas por miltiplos de 27 /n
(k=0,1,2,...,n—1). Nétese en particular que podemos reescribir la expresién (1.64) como

6
o= VTl exp (12) of, (1.65)
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con
2k
w® = exp (z%) (1.66)

una rotacion en sentido antihorario de 27 /n radianes. Las raices n-esimas forman, por tanto,
un poligono regular de n lados. En concreto, las raices n-ésimas de la unidad (z = 1) son los
numeros (1.66).

La raiz n-esima asociada a la determinacion principal del argumento,

Yz = /|| (cos Arg 2 + isen w) (1.67)
n

n

se denomina raiz n-ésima principal. Como anticipamos, nuestra eleccién del argumento prin-
cipal (1.36) garantiza que la raiz principal de z como nimero complejo coincida con la raiz
de z € RT.

Ejemplo: Calculo de las raices ciibicas de —27
Para calcular las raices cubicas de —27, podemos utilizar dos métodos:

e Método 1. Las raices ciibicas de —27 son las soluciones de la ecuacién polinémica
23 +27 =0, la cual admite una factorizacién

(ZF3)(z2— 32+ 9) =0l

El primer factor da la solucién —3. Las raices del segundo factor nos dan las
otras dos soluciones,

g (1+iv3)
e Método 2. Escribiendo —27 en forma polar,
—27 = 27e'™
la ecuacién polinémica 23 + 27 = 0 toma la forma
|2|3e% = 27¢i™ .

Identificando mdédulo y argumentos a ambos lados y resolviendo el sistema de
ecuaciones resultante,

|z = 27, 30 =7+ 27k,

obtenemos

’Z’ =3, 0 = g + ? VRN 97 = 3ei(7r/3+27rk/3) ’
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con k = 0,1, 2 (anadir otros multiplos de 27 da el mismo niimero complejo). Para
estos valores de k, recuperamos los resultados obtenidos con el primer método,

;(1+i\/§), 3, 2(1—1'\/5).

Estas raices estdn igualmente espaciadas a lo largo de un circulo centrado en el origen
y de radio |z| = 3.

Nétese que el producto de raices n-ésimas principales de ntimeros complejos no es necesaria-
mente igual a la raiz principal n-ésima del producto de niimeros complejos. De hecho, dadas
las raices de dos niimeros complejos z1 y zo tenemos,

A A A
VeV |z2| = V2|, rizl y B2 DIBAZ | opr (1.68)

n n

0 méas explicitamente Argz; + Argzo = Argzizo + 2knw. Como n > 2y —27 < Argz; +
Arg zy < 2w, necesariamente debemos tener k = 0, pues, en otro caso, |2knzw| > 47 y no
puede darse la igualdad. Concluimos, por tanto, que /z1 {/zo = /2929 si y solo si

—m < Argz; + Argzy < 7. (1.69)

Por ejemplo, si las partes reales de z; y 2z son positivas y, por tanto, ambos niimeros complejos
estan en el semiplano derecho, tenemos —7/2 < Argz; < /2y —mw/2 < Arg zy < w/2; y, por
tanto, Arg z1 +Arg 2o = Arg(z122) por lo que, en este caso, si se cumple qué Y/z1 {/z2 = {/z1%2.
Por el contrario, en el caso n = 2, z; = 29 = —1, tenemos

Arg(—1) + Arg(—1) = 27 # 0 = Arg(1) = Arg((—1)(~1)),
y, por tanto, no se cumple la condicién (1.69). En este caso, como anticipamos,
V-IV-1=-1#1=V1=/(-1)(-1),

es decir, v/—11/—1 = —1 es una raiz cuadrada de 1 = (—1)(—1) pero no es la raiz cuadrada
principal de 1.

1.8 Topologia del plano complejo

Como el conjunto C no es otra cosa que R?, definir una topologia en C es equivalente a
hacerlo en R%. En concreto, si zg es un ntimero complejo y r > 0, podemos definir:

1. Disco abierto, entorno o vecindad con centro en 2y y radio r:
D(zp,7) ={2€C:|z—z| <r}. (1.70)

El disco abierto no incluye su frontera, indicada en la figura con una linea punteada.
Nétese que un disco abierto no puede ser vacio. Por convenio, D(zg, +o0) = C.
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2. Disco abierto punteado o entorno reducido con centro en zy y radio r:

D'(20,7)={2€C:0<|z— 2] <r}. (1.71)

3. Disco cerrado con centro en zy y radio r:

D(zg,7) ={2€C:|z—2| <1} (1.72)

El disco cerrado incluye su frontera, indicada en la figura con una linea sélida. Nétese
qué D(z0,0) = {20}

4. Conjunto abierto: Un conjunto U C C es abierto si cada punto zg del conjunto esta
rodeado por puntos vecinos que también estdn en el conjunto, o mas formalmente si

Voo €U, 37 >0:D(2,7)CU. (1.73)
Por ejemplo, {z € C: Rez > 1} es abierto, pero {z € C: Rez < 1} no lo es.

5. Conjunto cerrado: Un conjunto ¥ C C es cerrado si el complemento de £ en C
(C\E ={z € C:2z¢ E}) es un conjunto abierto. Por ejemplo, el conjunto F' = {z €
C:Rez < 1} es cerrado.?

6. Conjunto conexo: Un conjunto £ C C es conexo si no puede ser dividido en conjuntos
abiertos disjuntos no vacios U y V, es decir, si no existen dos partes U y V tales que
UNE#0,VNE#0,yE=UNE)U(VNE).

Si E es un conjunto abierto, entonces E es conexo si y solo si es conexo por trayectoria;
es decir, si cualquier par de puntos en E puede conectarse por una trayectoria o curva
continua que se encuentra completamente dentro del conjunto.

7. Conjunto simplemente conexo: Un conjunto £ C C es simplemente conexo si su
frontera 0D es un conjunto conexo (en caso contrario, lo llamaremos multiplemente
conexo). Intuitivamente, un dominio simplemente conexo es un conjunto abierto for-
mado por una sola pieza y sin agujeros. Por ejemplo, C y un disco abierto D (zg, )
son dominios simplemente conexos. Por el contrario, un disco punteado es conexo, pero
no es simplemente conexo.

8. Dominio o region: Un dominio o regién es un conjunto abierto y conexo.

Ejemplo: Descripcién de Im(z71) > 1

Para z = z + iy # 0 y usando la expresién (1.28) podemos escribir

1 z T — 1y

2= — =
FRrEr .

4Nétese que no todo conjunto es abierto o cerrado. Por ejemplo, W = {z€C:1<Rez <2} noesni
abierto ni cerrado.
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y, por tanto,

-y

m>1 — m2+y2—|—y<0.

Im(z71) > 1

Completando cuadrados,

(P ryri) <t o 2y +12< 1)’
€z Yy Yy 1 4 L Y 9 9 )
podemos identificar la regién Im(z~!) > 1 como el interior de un disco abierto con
centro zp = —i/2 y radio 1/2.

1.9 Funciones

La definicién de una funcién en un dominio D C C es equivalente a establecer una regla
asociando a cada punto z € D un tnico nimero complejo,

f: D—C, w= f(z), (1.74)

con w el valor de f en z. De acuerdo con esta definicién, una funcién es tinica o monddromica,
es decir, tiene un solo valor. Separando la parte real e imaginaria en f y su argumento z,
tenemos, por tanto,

f(2) = ulz,y) +iv(z,y), f(z) = u(z,y) —iv(z,y), (1.75)

f(l2],0) = u(|z], 0) + iv(]z], 0), F(z) = u(lz],0) —iv(|2],0), (1.76)

con u,v funciones reales de las variables reales z e y o |z| y 0.

e L))

Para f(z) = 22 tenemos
f(x+iy) = (z +iy)? = 2% — y? + 2iyz,

y, por tanto,
w(z,y) =2 —y?, v(z,y) = 2zy.

Alternativamente, en forma polar, tenemos
f(|z1€?) = |2|?e?® = |2|% (cos(26) + i sen(26))
y, por tanto,

u(|z],0) = |z|? cos(26), v(|z|,0) = |z|* sin(26) .
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1.10 Limite funcional y continuidad

Los conceptos de limite y continuidad para funciones complejas se siguen de los correspon-
dientes para las transformaciones de R? a R?, permitiendo extender autométicamente los
teoremas elementales sobre limites y continuidad al caso complejo. En particular, el limite

lim f(z) = wo, wp € C (1.77)

Z—r20
de una funcién de variable compleja w = f(z) definida en un disco punteado alrededor de z
se corresponde con la existencia de un niimero positivo § > 0 tal que 0 < |z — 29| < § para
cada entorno | f(z) — wp| < € de wy. Dada la analogia formal entre esta definicién y las corre-
spondientes para funciones reales de variable real, las reglas de cédlculo de limites conocidas
siguen siendo vélidas para funciones de variable compleja, con las mismas demostraciones.
En particular, si los limites lim,_,,, f(2) y lim,_,,, g(2) existen:

1. El limite es tinico.

2. Las partes real e imaginaria del limite de una funcién coinciden con los limites de las
partes real e imaginaria de la funcién.

lim wu(x,y) = Rewp, lim v(z,y) =Imwy. (1.78)

T+iy—20 THiY—20
3. El limite de la suma es la suma de los limites,

lim [f(2) + g(2)] = lim f(2)+ lim g(z). (1.79)

Z—r20 Z—20 Z—20
4. El limite del producto es el producto de los limites,

lim [f(z)g(%)] = lim f(2)- lim g(z). (1.80)

Z—r20 Z—20 Z—20
5. Silim,y,, f(2) # 0, el limite de 1/f(z) es

lim 1/f(z) = 1/zh_>r§0 f(2),. (1.81)

Z—20

Una funcién compleja f(z) es continua en zg si y solo si lim,_,,, f(z) = f(20). De manera
similar, una funcién compleja f(z) es continua en U C C si y solo si f es continua en todos
los puntos de U. Al igual que con el limite, las propiedades de continuidad conocidas para
funciones de una variable real son también validas para funciones de variable compleja. En
particular, dadas dos funciones f y g continuas en zg, su suma, producto y composiciéon son
continuos en zy. Ademds, su cociente es continuo para g(zp) # 0.
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. g 2
Ejemplo: lim, ., é%i)g

A+ A427? . 42241 lim,o (422 +1)
lim — = lim —— = lim = —
oo (z—=1)2 250 (271 —1)2  250(1—2)2  lim, (1 — 2)?

4 (lim,—y0 2)® +lim, 01 .

(lim,—0 1 — lim,_,o 2)2

1.11 Diferenciabilidad y holomorfismos

Dada una funcién f(x,y) definida en un abierto en R?, se dice que f es diferenciable en un
punto (g, y0) € U si existe una forma lineal del tipo ah + Sk tal que

flxo+ h,yo + k) — f(zo,90) = ah + Bk + Q(h, k) h2 + k2, (1.82)

con o'y B en el mismo conjunto de valores asumidos por la funcién f en las variables hy k y
Q(h,k) -0, para h,k—0. (1.83)

En otras palabras, dichas funciones son diferenciables si la diferencia entre el incremento
flxo+h,y0+k)— f(xo,y0) v la expresién lineal ah+ Sk es un infinitesimal de orden superior
a Vh? + k% cuando h y k tienden a cero.

Si f es diferenciable en el punto (zg, yo), las cantidades o y 3 en (1.82) estan determinadas
de manera tnica y coinciden con las derivadas parciales,

a= %(l‘o,yo), B = gi(fﬂoayo)- (1.84)

Nétese, sin embargo, que la mera existencia de derivadas parciales en (x¢, o) indica tinicamente
la diferenciabilidad a lo largo de los ejes coordenados k£ =0 o h = 0. Para que f sea diferen-
ciable en ese punto, se requieren condiciones adicionales como la existencia de las derivadas
parciales en un entorno del punto y que estas sean continuas en el punto (zg, yo).

Aunque la condicién de diferenciabilidad (1.82) es perfectamente valida para funciones
complejas de una variable compleja, estaremos principalmente interesados en aquellas fun-
ciones diferenciables en las que expresién lineal ah + Sk aparece unicamente en la forma
w = h + ik. Para dichas funciones, la diferenciabilidad de f estd intimamente relacionada
con la condicién de holomorfismo en un punto zy € U,

. f(ZO + w) — f(ZO) |w|Q(U))7

dyeC =v+— con Qw)—0 con w—0. (1.85)
w w

Esta definicién puede extenderse a todo un subconjunto del plano complejo. En particular,
diremos que f es holomorfa en un subconjunto U de C si es holomorfa en cada punto z € U.
Algunos libros utilizan los términos “analitica”, “diferenciable” o “diferenciable en el plano
complejo” en lugar de “holomorfa”. El uso del término analitica deriva del hecho de que
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una funcién holomorfa admite una expansion local en serie de potencias en cada punto de su
dominio. Las funciones holomorfas en todo el plano complejo se llaman funciones enteras.

Si tomamos zg = zg+iyo y w = h+ik y comparamos las relaciones (1.82) y (1.85), la condicién
de holomorfismo en un punto implica de hecho la diferenciabilidad de f como funcién de las
variables reales x e ¥, con la condicién adicional de qué a y 6 dependan unicamente de ~,

_of _of . L 9
==, B_—ay_w, a+if=~v+iy=0, (1.86)
o alternativamente
of .of
—_— — . ].'
97 —i—zay 0 (1.87)

Puesto que el cociente |w|/w en (1.85) es un nimero complejo con médulo unitario, la
condicién de holomorfismo es también equivalente a la existencia del limite del cociente in-
cremental en el punto z,’

f(z0 +w) — f(20) = f'(z0) = %(20)7 (1.88)

v = lim
w—0 w

con f'(z9) la derivada de f en zy. De esta condicién se sigue facilmente que si una funcién
f : C — C es diferenciable en 2, entonces es continua en z,

ti 1620 Gl =t | P2 -
(1.89)
- Z]LHZLO f(zl:io(ZO) ZILHZIO (Z B ZO) - f/ (ZO) 0=0.

Las operaciones aritméticas elementales respetan la propiedad de holomorfismo. En particu-
lar, si dos funciones f(z) y g(z) son holomorfas en un punto zp, entonces su suma f(z)+ g(z),
su diferencia f(z) — g(z), su producto f(z)-g(z) y su cociente f(z)/g(z) para g (zp) # 0 son
también funciones holomorfas en zq, y, por tanto, derivables.

(f £9)(20) = f'(20) £ ' (20) , (1.90)
(f9)'(z0) = f'(20)9(20) + f(20)g (20) , (1.91)
<£) (20) = f (Zo)g(z(g(;))];(zo)g (z0) : g(z0) £0. (1.92)

En concreto, los polinomios
p(2) =co+ 1z + 2% 4+ 2" (1.93)

con ¢ € C para 0 < k < n y las funciones racionales

_p()
r(z) = )’ (1.94)

®Dicho limite es, de hecho, un limite doble, donde tanto la parte real como la parte imaginaria de w deben
tender a cero.
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con p(z) vy q(z) funciones polinémicas, son diferenciables en cada punto de su dominio,
pudiéndose calcular sus derivadas con las mismas reglas que se aplican a la derivada real,
incluida la regla de la cadena,

[ i G T

Para un monomio arbitrario z" = (z + iy)", tenemos por ejemplo

(z+w)n_zn _ n n—1 - n k—1_n—k n—1
T Y +kZ_2 i (w)* 2 e

Por otro lado, es facil verificar que dicha funcién satisface las condiciones de Cauchy-

Riemann,
JCO OG") _ jie 1)
B n(x + iy) , 99 in(z+idy)" ",
DM DG
o +1 ay =n(z+iy)" " (1+i*) =0.

1.11.1 Condiciones de holomorfismo: las ecuaciones de Cauchy-Riemann

Separando la parte real e imaginaria en la ultima expresién en (1.86),
f(z) = u(z,y) +iv(z,y) z=a+iy, (1.95)

obtenemos las llamadas condiciones de holomorfismo de Cauchy-Riemann,

ou Ov ou ov
%= 5y e (1.96)

Este resultado pone de manifiesto que la mera elecciéon y combinacién de dos “buenas” fun-
ciones de variable real w,v, no garantiza que la funcién f(z) sea derivable en el sentido
complejo, ya que dichas funciones reales no tienen por qué verificar las ecuaciones de Cauchy-
Riemann.

Como subproducto de estas relaciones tenemos también que para funciones holomorfas

a _of
dz  Ox’

D>

fz2) =2* — 2= (x +iy)* — (z +iy) = (2 — y* - 2) + 2y — y) = u(z,y) +iv(z,y).

(1.97)

Para una funcion
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independiente de Z, las ecuaciones de Cauchy-Riemann se satisfacen explicitamente

ou ov ov ou

La funcién f(z) es, por tanto, holomorfa.

B AU ST DR

Para una funcién
9(2) = |2? — 4z + 22 = 272 — 42 + 22 = (2® + y® — 22) +i(—6y) = u(z,y) + v(z,y),

dependiente de z como de Z, las condiciones de Cauchy-Riemann no se cumplen

ou ov ov ou
G mm-2A-6=g,  Zl=0f-ty=—.

La funcién g(z) es, por tanto, no holomorfa.

D>

Para ilustrar la relacién de las ecuaciones de Cauchy con problemas de relevancia en
fisica, consideremos el campo de velocidad de un fluido en 2 dimensiones,

V=V(zy).

En ausencia de fuentes, sumideros o vértices, el movimiento del fluido es solenoidal e
irrotacional, es decir, el campo de velocidades tiene divergencia y rotacional nulos,

—»_8Vx BVy_ —»_8V$ 8Vy_
V-V = 8x+ay_o, VXxV= 3y 83:_0
Identificando
u(x,y) = Vm(ac,y) 5 U(.%,y) = _Vy(xay) )

estas propiedades son equivalentes a las condiciones de Cauchy-Riemann en (1.96). En
otras palabras, el movimiento solenoidal e irrotacional de un fluido puede describirse
en términos de una funcién holomorfa f(z) = u(z,y) + iv(x,y) con z = x + iy.

Reescribiendo las relaciones de Cauchy-Riemann en términos de las variables z = = + iy
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y Z = = — iy mediante la regla de la cadena y las relaciones

1 1
T = 5(2 + Z)a Yy = 22('2 Z)v (198)
obtenemos
05 1 (05 05\ _1(3u v i (o0 ou
0z 2 (816 Z@y) 2 <8:U * ay) T3 (8;10 6y> ’ (1.99)
Of 1 (05 05\ _1(0u Y i (v, o
0z 2 (&U +Z8y> 2 <8x 8y) T3 (8x * 3y> ' (1.100)
Teniendo en cuenta (1.87) y (1.96), esto implica
of _of of _
== 5z =0 (1.101)

Una funcién holomorfa no puede, por tanto, depender explicitamente de Z! En otras palabras,
las funciones complejas derivables son “auténticas funciones complejas,” en el sentido de que
si la funcién u(z,y) + iv(z,y) es derivable, la expresién que se obtiene al realizar el cambio
(1.98) en u(z,y) +iv(z,y),

Z2+Zz2 z—Z2 Z2+Zz z—2
= ] 1.102
1o =u (255 i (55 (1.102)
depende unicamente de la variable z. Nétese también que
0 0 0 0
02"~ 02"~ oz° = 07" (1.103)

Ejemplo: Revision de los ejemplos anteriores

Es ilustrativo examinar los dos ejemplos anteriores con este nuevo criterio:

0 0 ,
9z (2) = G (
La funcién f es holomorfa.

0 0 5 B .
£g(z)—£(\z\ —4z+2z)—az(z Z—4242z)=2+4+2#0.

La funcién g no es holomorfa.

1.11.2 Relacion entre funciones holomorfas y armonicas

La derivada de una funcién homomorfa es también homomorfa, implicando la existencia de
segundas derivadas parciales para su parte real e imaginaria. Es facil ver que si una funcién

f(z) =u(z,y) + v (x,y), z=x+1y, (1.104)
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es holomorfa, tanto u como v son funciones arménicas,

0? 0? 0? 0?
- 4 = = — L — =0. 1.1
<8x2+8y2)u 0, (8x2+8y2)v 0 (1.105)
En particular, basta multiplicar la condicién (1.101) por 9/0z,
0 0 110 0 110 0
I N P S = 4+ i— | = 1.1
0z 0z <2 [8x Zay]) <2 [8x+lay]> [u+iv} =0, (1.106)
multiplicar por 4 y desarrollar las derivadas,
0? 0? 0? 0? 0? 0?
4+ ] = [ o + — i +— ) v=0. 1.1
<8x2+8y2>[u+w] <8x2+8y2>u+2<8x2+8y2)v 0 (1.107)

Viceversa, dada una funcién real de dos variables reales que sea armoénica, es siempre posible
encontrar una funcién holomorfa de la cual esta sea la parte real o imaginaria. Dicha funcién
estd determinada salvo una constante. En particular, si u(z,y) = Re f(z), la parte imaginaria
deberia cumplir

ov _ Ou [V Ou(z, 1)
Derivando con respecto a x, teniendo en cuenta (1.105), e imponiendo du/dy = —0v/dx,
Y 92 y 92
2oy / TUDD 4y 4 b () = - / TULD 4y 4 1
v w T w Y (1.109)
_ _au(x7y) + Ou (3772/0) + h,($) _ _8u(:c,y) ’
Ay oy Ay
obtenemos
ou (x, o) /z ou (t,yo)
Wiz)=——"""" — hlz)=— | —222dt+c (ceR 1.110
() a9y () oy ( ) (1.110)
y por tanto
Yy T
vz, y) = / dul,t) —/ gut:yo) gy 4 . (1.111)
w O 20 y

Por construccién la funcién f = u + iv cumple las ecuaciones de Cauchy-Riemann.

1.12 Funciones elementales

Las funciones elementales de variable compleja son extensiones de las correspondientes fun-
ciones de variable real. Para definir dichas funciones, recurriremos a la expansién en serie de
potencias de las funciones reales, sustituyendo la variable real por una variable compleja y
demostrando que la expansion formal obtenida converge en un dominio apropiado, como un
disco en el plano complejo o la totalidad del mismo.
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1.12.1 Exponenciales

Consideremos por ejemplo la expansién en serie de la funciéon exponencial y su extension al
caso complejo

em: E H, $€R — ez: E ﬁ, ZGC, (1112)
n=0 n=0

o nl=n-(n—1)-(n—-2)---3-2-1 (1.113)

la operacién de factorizacion usual. La serie resultante serd convergente si la sucesion de las

sumas parciales
N n

Sy (z) = Z% (1.114)
n=0
da lugar a una secuencia de puntos en el plano complejo que converge a un punto definido
como e?. Asumiendo N > M y teniendo en cuenta la generalizacién de la desigualdad
triangular en (1.25),

> 4N 1, (1.115)
j=1 j=1

tenemos
N n N ]z]"
|Sn = Sl =| Y —~ < > WN,M_QOOO’ (1.116)
n=M+1 n=M+1

puesto que la serie (en R)
PR SE
el = E — (1.117)

es convergente para todo |z|. Dado que el criterio de Cauchy es necesario y suficiente en R?,
y, por tanto, en C), la serie exponencial

=Y = 2eC (1.118)

converge para cualquier z. Definida de esta forma, la exponencial compleja satisface todas

las propiedades de la exponencial real. En concreto, para z, z1, zo € C se tiene
e*t
e”#0,Vz, AT = P12 e = — 1/e* =e™*. (1.119)
e?2

Otras propiedades importantes se siguen inmediatamente de la descomposicién de la expo-
nencial en sus partes reales e imaginarias,’

e” = W = %W = e%(cosy + iseny). (1.120)

5En algunos textos, esta expresién constituye la definicién de la exponencial compleja.
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En concreto, tenemos

e =1, ™2 =, e =—1, ™2 = =1,
R _ (1.121)
le*| = ™% = e", arg (€*) =Imz (mod27), er =¢e”.
Ademss, la funcion exponencial es periddica con periodo imaginario puro 274,
ez+2zkﬂ' _ eze2zk7r _ ez7 (1122)

puesto que para k € Z, e¥*F™ = 1.

1.12.2 Funciones trigonométricas

De manera similar, el seno y el coseno de un ntimero complejo vienen definidos por las series

convergentes
0 52n+1 OO 52n
— _1\" — —1\"
senz=>» (—1) G cosz =Y (1) ok (1.123)
n=0 n=0
cuya manipulacion algebraica,
oo 2n oo 2n+1 00 i Nk
, _ n % . n % B (i2)" 4,
cosz—i—zsenz—Z(—l) m—i—zZ(—l) Gn 1) —Z = (1.124)
n=0 n=0 k=0
permite generalizar la férmula de Euler,
€” =cosz+isenz. (1.125)

Puesto que las funciones coseno y seno en esta expresién estan definidas por potencias pares
e impares respectivamente, tenemos que dichas funciones son par e impar bajo el cambio
z— —z,

cos(—z) = cos(z), sen(—z) = —sen(z), (1.126)
y, por tanto, ‘

e ¥ =cos(—z) +isen(—z) =cosz —isenz. (1.127)
Combinando (1.125) y (1.127), podemos expresar el seno y el coseno en términos de funciones
exponenciales complejas

1z __ e—ZZ eZZ _|_ e—’LZ

senz = ——— cosz = ——— 1.128
: % : 2 (1.128)
y verificar las expresiones

cos(z1 + z2) = cos z1 €OS 2o — sen z1 sen 2y, (1.129)

sen(z] + z2) = sen z1 €os 29 + COS 21 sen 23 , (1.130)
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para z1, 29 € C y la relacion fundamental de la trigonometria,

sen?z +cos®z =1, (1.131)

con todas las implicaciones algebraicas que eso conlleva. Ademas, debido a la iltima propiedad
en (1.121), se tiene Sénz = senz y COSZ = COS Z.

Del mismo modo, se pueden extender al caso complejo todas las demads funciones trigonométricas
como la tangente,

tanz = 0 (cosz #0), (1.132)
cos z
la cotangente,
Cos 2 1
tz= = , : 0 1.133
core senz  tanz (senz #0) ( )
la secante,
= 0 1.134
secz = ——, (cosz #0), ( )
y la cosecante
1
cscz = , (senz #0). (1.135)
sen z
Noétese que
senz=0 — ef—e =0 — =1 — z=kr (ke2), (1.136)
y, analogamente.
cosz=0 — z:g+k‘7r(/~c€Z). (1.137)

1.12.3 Funciones hiperbdlicas

Las funciones hiperbodlicas también pueden extenderse al plano complejo mediante una ex-
tension de su desarrollo en series convergentes,

©  L2n+l < on
senh z = Z m s cosh z = Z W s (1138)
n=0 n=0
o de manera mas simple a través de las relaciones
% —z zZ_ ,—z
coshz = i, senhz= S ° , (1.139)
2 2
de las cuales se sigue inmediatamente la relacién fundamental
cosh? z — senh? z = 1 (1.140)
y las relaciones
senh(iz) = isenz, sen(iz) = isenh z,
(i2) (i2) (1.141)

cosh(iz) = cos z, cos(iz) = cosh z,
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con las funciones trigonométricas. Tenemos, por ejemplo,

> ( 2n+1 »2n
senh(iz) = Z m =1 Z 2n Zri =isenz. (1.142)

Tomando z = x + iy se sigue también que

sen z = senx coshy + icosxsenhy, senh z = senhx cosy + icoshxseny, (1.143)

cosz = cosx coshy —isenxsenhy, cosh z = coshz cosy + isenhzseny .

Nétese que aunque que las funciones seno y coseno en estas expresiones conservan su periodici-
dad caracteristica a lo largo de la direccién del eje real (f(z) = f(z+27k), k entero), divergen
exponencialmente en la direccién del eje imaginario (y — oc). Por otro lado, las funciones
hiperbdlicas correspondientes, muestran periodicidad a lo largo de la direccién imaginaria
(f(z) = f(z +i2mn), n entero) y divergen exponencialmente en la direccién real (x — o0).
Ninguna de estas funciones es, por tanto, acotada.

Las demas funciones hiperbdlicas se definen analogamente al caso trigonométrico. Por
ejemplo, tenemos

tanh z = = —itan(iz) (coshz #0). (1.144)

1.12.4 Logaritmos

La determinacién de funciones inversas de la exponencial y las funciones trigonométricas e
hiperbdlicas requiere precauciones especiales debido a sus propiedades de periodicidad. Por
ejemplo, a diferencia de lo que ocurre en la exponencial real, la exponencial compleja toma
el mismo valor para un nimero infinito de nimeros complejos,

TR — 2 ke . (1.145)

Con esto en mente, definimos el logaritmo de un niimero complejo no nulo z como todos los
numeros complejos w tales que e = z. Las soluciones a esta ecuaciéon vienen dadas por

log z = Log |z| + i arg z, (1.146)
con Log el logaritmo real.

Ejemplo: Determinaciéon de w =z + iy en e¢* =141

Para determinar el niimero complejo w = x + 1y tal que e = 1 + ¢, expresamos el
numero complejo z = 1 + 7 en coordenadas polares, obteniendo

"t = e¥(cosy + iseny) = v2(cos(m/4) + isen(n/4)).
Comparando médulos y argumentos, tenemos

z = Log V2, y = /4 + 2wk, para k=0,+1,+2,...
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y, por tanto,
log(1 +4) = Log V2 + i( /4 + 2k)

con k € Z.

Notese que, aunque Log es una funcién, log es multievaluada debido a arg. La determi-
nacion del logaritmo se sigue de la determinacion del argumento,

log; z = Log|z| + iarg; z. (1.147)

Definido de esta manera log; z es uni valuado. El precio a pagar por esto es que log; z no es
continuo a lo largo del eje negativo real. Nétese ademas que

La determinacion principal del logaritmo se corresponde de nuevo con una eleccién de
intervalo (—m,7|. Puesto que el argumento principal de los nimeros reales es 0, la determi-
nacién principal del logaritmo de un nimero real coincide con su logaritmo real. Esto nos
permite escribir

Logz = log(_, 2 = Log || + i Arg 2. (1.148)

1.12.5 Potencias

La funcién potencia compleja se puede definir a través funcién de logaritmo complejo,
2V = egwlogz (1.149)

adquiriendo también sus ambigiiedades. Nétese que, en general, si z # 0, zW1TW2 £ Wi W2,

 Bjemplo: Céleulo de 2

20 = exp(ilog2) = exp(i(Log 2 + i27k))
= exp(—27k + i Log 2) = e 2™ (cos(Log 2) + isen(Log2))’

con k entero.

La funcién de potencia compleja nos proporciona una alternativa a la factorizacion y
férmula de De Moivre para el calculo de raices n-ésimas de niimeros complejos.

[ Efeuanlor Rafoes cilbleas de 2 ) >

Para calcular las raices cubicas 2¢ podemos escribir

(20)1? = exp (% log 22') ,
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y calculamos
log(2i) = Log2 +i(m/2 + 27k), conk € Z,

1 1
3 log(2i) = 3 Log2 +i(m/6 + 27k /3) .
Tenemos, por tanto, tres raices

1 2 2
exp (3 log(2i)> =2 <cos (g 4 7;/@) + isen (g + g/-e))

para k = 0, 1,2, todas con magnitud /2.

1.12.6 Derivadas de las funciones elementales

Las funciones exponenciales, seno, coseno, seno hiperbdlico y coseno hiperbdlico son diferen-
ciables en todo z € C,

9 . _ouxy) Ov(xy @ 2

—e* = = = 1.1
55 o +1 5 e’ cosy +ie“seny = €*, (1.150)
3, Senz =cosz, 5, (084 = —senz, (1.151)
9 senh z = cosh z, £ cosh z =senh z, (1.152)

Las funciones tangente y tangente hiperbdlicas son diferenciables en todo el plano complejo,
salvo en los ceros del coseno y el coseno hiperbdlico, respectivamente

&tanz: o2 Vz#m/2+kn, keZ, (1.153)
1 . )
atanhz: . Vz#mi/2+kni, keZ. (1.154)

El logaritmo principal es diferenciable en todo el plano complejo, excepto en el eje real no
positivo. En este conjunto, tenemos

0 1
—1 =—. 1.1
5, 1082 =~ (1.155)



CHAPTER 2

INTEGRALES COMPLEJAS

2.1 Curvas y contornos
e Caminos: Un camino z = ~(t) es una parametrizacién continua a través de una
variable real ¢ que varfa en un intervalo [a, 8] que asumimos finito. Los puntos a = y(«)

y b = v(8) se llaman extremos. Si estos coinciden, y(a) = v(f), el camino se llama
cerrado.

A v(b)

i
a b k.y

v

v(a)

Algunos caminos usuales son, por ejemplo, el segmento de origen a y extremo b,
y la circunferencia de centro a y radio r,

v:[-m 7] = C v(t) = a + re't. (2.2)

e Camino simple: Un camino se llama simple si la parametrizaciéon + es continua y
biyectiva en el intervalo (a, ) de variacién del pardmetro. En la préctica, esto es
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equivalente a requerir que el camino no se corte a si mismo, es decir, que no tenga
nodos u otros puntos que se obtienen para dos o més valores distintos de ¢, y(t) # v (')
para todo t,t' € [a, §]. La siguiente curva, por ejemplo, no es simple,

e Camino de Jordan: Un camino simple y cerrado se llama camino de Jordan (la
biyectividad se pierde solo en los extremos).

e Camino diferenciable: Un camino se dice diferenciable o regular si es posible definir
una direccién tangente al camino en cada punto del mismo, o en otras palabras, si la
parametrizacién admite una derivada 4/(¢) continua y no nula en cada punto. estas
condiciones excluyen el caso en el que recorremos la curva deteniéndonos en un punto
(sin velocidad, no conocemos la direccién del movimiento), o cuando hay més de una
direccién tangente.

e Camino rectificable: Un camino ~(t) = z(t) + iy(t) se dice rectificable si “en casi
todas partes”! tiene una derivada ~/(t) con un valor absoluto integrable que define la
longitud del camino, i.e.

B B
L, - / I/ (t)] dt = / VI @OF + ). (2.3)

Obviamente, un camino es diferenciable a trozos también es rectificable.

e Caminos equivalentes: Dos caminos 71 : a1, 1] — Cy 72 @ [ag,B2] — C se
dicen equivalentes si uno se obtiene a partir del otro mediante un cambio de variable
adecuado, o més formalmente si existe una funcién 7 : [og, 1] —— [aw, B2 continua,

sobreyectiva y estrictamente creciente, tal que v;(t) = v2(7(t)) para cada t € [a1, 1.

e Curvas: La clase de caminos equivalentes segiin la relacién de equivalencia anterior
se llama curva, siendo estd determinada dnicamente por su trayectoria geométrica y
no por la manera en que se recorre. Nétese, sin embargo, que, al haber requerido que
el cambio de variable entre caminos equivalentes se exprese a través de una funcién
creciente que mantiene el orden de los puntos a lo largo de la curva, la direcciéon de
recorrido sigue siendo relevante. Diremos que una curva cerrada limitando una regién
D se recorre en el sentido o direccion positiva si al hacerlo dicha regiéon queda a la

M4s concretamente, en todas partes, excepto en un conjunto finito de puntos de (a, B) en los cuales tiene
limites laterales distintos.
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izquierda de la curva. Por ejemplo, en el caso de un circulo centrado en el origen, la
direccién positiva es la direccion en sentido antihorario.

Las mismas condiciones y definiciones aplicables a caminos se extienden naturalmente a
las curvas, definiendo definir los conceptos de curva de Jordan, rectificable y diferencia-
ble (siempre y cuando el cambio de variable 7 este dado por una funcién diferenciable,
continua y con derivada estrictamente positiva).

2.2 Integrales de linea y contorno

Consideremos ahora la integracién de funciones f(z) de variable compleja z = = + iy a lo
largo de curvas v en el plano complejo. A menos que se especifique lo contrario, asumiremos
siempre que estas curvas son rectificables y no se cruzan a si mismas.

Sea z = z(t) = x(t) + iy(t) la ecuacién paramétrica de una curva 7 en el plano complejo,
con t; < t < t9 un pardmetro real y z(t) e y(¢) funciones univocas, reales, continuas y
derivables, con derivadas primeras continuas.

b

Dividiendo el arco situado entre los puntos terminales de la curva en n intervalos, zy =
Ay 21,y 2n—1,2n = b, y eligiendo un punto adicional {; en cada arco zx_1zp, evaluamos el
limite n — oo de la suma
n n
L= f(C) (2 — 2r—1) = D _ f (Gk) Az, (2.4)
k=

1 k=1

con Az = zp—zp—1 y |Azi| — 0 para cada k, definiendo en caso de existir la llamada integral
de linea de f(z) a lo largo de la curva v,

n

I= [ fede= Jim 3 £(G) G = 21) (25)
5 n—o00 =

Las integrales de linea a lo largo curvas cerradas con puntos terminales coincidentes reciben
el nombre de integrales de contorno y vienen denotadas como

I = if(z)dz. (2.6)
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Las propiedades fundamentales de las integrales de linea son andlogas a las de las integrales
ordinarias. En particular, tenemos linearidad,

f(z)dz + b/g(z)dz, (2.7)

~

Awﬂ@+@@wk=a/

~

y aditividad con respecto al intervalo,

[ se= [ s [ s .

Esta ultima propiedad permite definir integrales para curvas que no sean simples. Ademas,
podemos recorrer la curva 7 : [, 8] — C en sentido inverso (—v)(t) = v(8 + a —t) (variando
t de tQ a tl),

/_ FOUES A F(2)dz (2.9)

y considerar cambios de variable complejos a través de transformaciones de coordenadas
z = z(() invertibles y con Jacobiano no nulo,

a=(¢)
z)dz = z dc¢, 2.10
| o= [ et (2.10)

con v y 7' imégenes una de la otra, v = z(v/).

2.3 Primitivas

Supongamos que una funcién f(z) pueda expresarse como la derivada de una funcién primitiva
F(z) en una regién abierta del plano complejo que contiene la curva =,

_ dF(z)

o (2.11)

f(2)

Si f(z) es continua, esta propiedad nos permite recuperar el llamado teorema fundamental
del célculo integral o regla de Barrow,

/vf(z)dz:/vdFd—iZ)dz:/t:b %dtzp(z)

= F(b) — F(a), (2.12)

Noétese en particular que la integral no depende del camino, sino solo de los extremos a y b.
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En particular, para un camino cerrado 7 con extremos coincidentes a = b tenemos

dF(z)
dz= ¢ ——=dz=0. 2.13
§ sz = § T (213)
Ademas, si todas las derivadas existen y son continuas, podemos escribir
d _ i d9(z) | df(2)
@) = 1002 + L gs), (214)
y
[ e = ez - [ 42 s (215)

2.4 Desigualdad de Darboux

Si f(z) es una funcién holomorfa en una regién simplemente conexa D y 7 es un camino
rectificable en D, podemos acotar la suma (2.4) que define la integral (2.5) para n — oo
mediante desigualdad triangular generalizada,

[Tl < D21 (Gl ok = 21| < max [ f(2)] Y lak =zl < max |f(2)| Ly, (2.16)
k=1 k=1

y con ello el médulo de la integral de una funcién compleja f a lo largo de una curva -,

Lf(z)dz

con | f(z)| el valor absoluto de la f(z) y L. la longitud de la curva en el plano complejo. En
otras palabras, la desigualdad de Darboux establece que el valor absoluto de una integral
compleja a lo largo de un camino es acotado por el méximo valor absoluto de la funcién f(z)
en ese camino, multiplicado por la longitud del camino. Esta desigualdad es extremadamente
util para estimar el valor de integrales complejas, ya que proporciona una forma de acotar el
valor absoluto de la integral sin calcular la integral en si.

< max|/(2)| L, (217)

Teniendo en cuenta que para |z| = 3

Z4z+1|>|2| -z —1=2>—|2| - 1=5,

/ dz 67r<1> 37 97
| lz)]=75<==.
,YzQ—I-z-I—l 4 \5 10 16

tenemos
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2.5 Teorema de Cauchy

El analisis de la seccién 2.3 asume la existencia de una primitiva para demostrar que el
valor de la integral depende solo de los puntos extremos, lo cual no estd garantizado para
funciones complejas genéricas. Este si es el caso, sin embargo, de las funciones holomorfas
en un disco, para las cuales la nulidad de la integral a lo largo de una trayectoria cerrada
simple, garantiza la independencia del camino entre los puntos extremos. Este resultado se
resume en el llamado teorema (integral) de Cauchy. 2

Teorema de Cauchy

Sea f(z) una funcién holomorfa en una regién abierta simplemente conexa D, entonces,
si v es una curva de Jordan, regular a trozos, contenida en D, se cumple

]{f(Z)dz =0. (2.18)
g

Ademsds, f admite una primitiva en D.

Aunque la formulacién del teorema es extremadamente simple, su demostraciéon general
es algo laboriosa y no la consideraremos aqui. Nos conformaremos con demostrarlo con la
asuncién adicional de que f’(z) es continua. Esta tltima condicién nos permite hacer uso
del teorema de Green en R?, el cual relaciona la integral de linea de un campo vectorial
F = (P,Q) : D — R? sobre una curva cerrada v (con P y @ continuas y con derivadas
parciales continuas) con una integral doble sobre el recinto D que encierra la curva,

. 0Q 0P
[y(Pdw—i—Qdy) —/D (% — 8_y> dzdy. (2.19)

En particular, separando f(z) y dz en sus partes reales e imaginarias, f = u+ivy z = z+1y,
ffdz:%(udm—vdy)%—i%(vdm%—udy), (2.20)
v gl ¥
y usando el teorema de Green en ambas integrales obtenemos
%f:—%(uy—f—vx)d:cdy—l—ij{(ux—vy)dardy:(), (2.21)
¥ B B

donde en el dltimo paso hemos tenido en cuenta las condiciones de holomorfismo en (1.96).
Como anticipamos, este resultado garantiza que la integral de contorno entre dos puntos en un

2En su forma original, el teorema requerfa una hipétesis adicional, es decir, no solo que f(z) fuera derivable,
sino también que dicha derivada fuera continua. Posteriormente, Goursat se dio cuenta de que la derivada de
una funcién holomorfa siempre es continua y demostré que la continuidad de la derivada no es necesaria. Con
base en esto, el teorema también es conocido como el teorema de Cauchy-Goursat.
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dominio de holomorfismo simplemente conexo no dependa del camino elegido para conectar
los dos puntos. En particular, dada la unién de dos curvas arbitrarias C; y Cy conectando
dos puntos fijos a y b, con una de ellas recorrida en sentido inverso,

o b
a Cz
se tiene que
0= f f(z)dz = f(z)dz — f(z)dz. (2.22)
ClU{ch} Cq Cs

En este caso, tiene sentido hablar de f; f(2)dz, ya que la integral no depende del camino.

El teorema de Cauchy se puede extender a regiones multiplemente conexas que se vuelven
simplemente conexas mediante la formacion de barreras o lineas de corte. En este caso, es
importante prestar atencién a la orientacién relativa de las diversas curvas que componen
la curva total. En particular, dichas curvas deben tener una orientacién relativa de manera
que, desde un mismo lado, encierren una regién conexa en la cual la funcién es holomorfa.
Consideremos por ejemplo una funcién f(z) holomorfa en un dominio abierto D como el de la
figura, con v =y U2 y 71 v 72 dos curvas de Jordan recorridas respectivamente en sentido
antihorario y horario. En particular, la orientacién es tal que las curvas tienen una region a
su izquierda que esta completamente contenida en D.

Abriendo v y 2 v agregando segmentos orientados que conecten dichas curvas sin cambiar
las orientaciones anteriores, podemos obtener una sola curva cerrada I', regular a trozos.
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Puesto que la nueva curva I' rodea ahora una regién simplemente conexa donde f(z) es
holomorfa, podemos aplicar sin problemas el teorema de Cauchy en la formulacién (2.18),

0—£f(z)dz— (/CIJF/ABJF/CQJF/B/AI) f(z)dz. (2.23)

Nétese ahora que, en el limite en que A y B se acercan infinitesimalmente a A’ y B’, las
integrales a lo largo de los segmentos orientados AB y B’A’ se anulan entre si, mientras que
las integrales a lo largo de los arcos C7 y (5 se aproximan a las integrales en las curvas
cerradas v1 y y2. Tenemos, por tanto, que

(]{“ +j£2> f(z)dz = ?if(z)dz =0. (2.24)

Este resultado es facilmente extensible a regiones con un mayor nimeros de “agujeros”. FEn
particular, en una regién conexa, la integral de una funcién holomorfa a lo largo de una curva
de Jordan ~ recorrida en sentido antihorario estd dada por la suma de integrales a lo largo
de las curvas que rodean los agujeros contenidos en +, recorridas en sentido horario,

ff(z)dz =Y ¢ f(z)dz=0. (2.25)
Y k Yk

s
[
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Ademas de ilustrar la aplicabilidad del Teorema de Cauchy a regiones multiplemente conexas,
el resultado (2.24) prueba el llamado Teorema de deformacidn de circuitos.

%f Teorema de deformacién de circuitos

Si una funcién es holomorfa en una regién limitada por dos curvas de Jordan disjuntas
~ vy 7/ recorridas en sentido antihorario, entonces

?{ F(2)dz = 7{ F(2)dz. (2.26)

En otras palabras, una trayectoria cerrada puede ser modificada libremente y de manera
continua, siempre y cuando dichas modificaciones ocurran dentro de la region de holomorfismo
del integrando y las caracteristicas topoldgicas de la curva permanezcan inalteradas.

2.6 Representacion integral de Cauchy

A partir del teorema de Cauchy, es posible derivar una férmula integral de gran importancia
para el desarrollo de la teoria y con una amplia variedad de aplicaciones en problemas fisicos.

%f Teorema de representacion integral de Cauchy

Dada una funcién f(z) holomorfa en una regién abierta y simplemente conexa D, y

una curva de Jordan ~, regular a trozos y recorrida en sentido antihorario (positivo), se
cumple que

(2.27)

1 f f(z) & {f(z) si z estd en el interior de 7,
z =
.

2mi ., 2 — 2 0 si z estd en el exterior de .

Si z esta fuera de la curva ~, el resultado del teorema es inmediato, ya que el integrando

f(Z)

z -z

9(z') =

es holomorfo en todo el interior de la curva v y, por tanto, segin el teorema de Cauchy, su
integral a lo largo de ella es idénticamente cero,

(2.28)

j{g(Z’)dz’ =0. (2.29)
vy

Para demostrar el teorema en el caso en el caso no trivial en el que z estd dentro de la curva
7, tendremos en cuenta que, debido a su diferenciabilidad, la funcién f(z) es continua en D,
existiendo, por tanto, un nimero positivo 6 > 0 tal que |2’ — z| < d(¢) para cada entorno
|f(2") = f(2)| < € de z. Parametrizando en sentido antihorario un circulo I' con centro en z
y radio r < () suficientemente pequeno para que el circulo esté dentro de ~,

2(0) =z +re?, 0<0<2m, Zer, (2.30)
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tenemos ,
2 —z r r
Utilizando ahora la desigualdad de Darboux,
, ' < Somr = 2re, (2.32)
2l —z r
y teniendo en cuenta que
2 1 )
Fjilz_ﬂﬂaé ;Ewd%w:%ﬁ@% (2.33)
podemos escribir
/
im ¢ L) g f Zz G gt 4 tim :;Qﬁ-d ' = 2mif(2). (2.34)
e—0 Z—Z 6—)0 2=z e—0 Jp 2 — 2
=0

Puesto que el integrando f(2')/(2' — z) en el lado izquierdo de la expresién anterior es holo-
morfo en cada punto 2z’ # z, la integral sobre la circunferencia I' es igual a la integral sobre
v, permitiéndonos escribir

?f %dz' —omif(2), (2.35)

lo cual concluye la prueba del teorema. Nétese que, salvo que f(2’) se anule para 2’ — z, la
integral en esta expresién no existe para z € v.

 Elemplr 5 on cieulo 7 deradio 12, coteo £ =1, erentado posiivo.

Escribiendo el integrando en la forma

2 1 1
22—-1 2—-1 z+41’

2 1 1
/Q—dz:/ dz—/ dz .
,yz—l 72’—1 Vz-i—l

La primera integral puede calcularse usando la férmula integral de Cauchy (2.35),
obteniendo
1 .
/ dz = 2mi .
L 2=

La segunda integral es nula por el teorema de Cauchy, puesto que su integrando en

analitico dentro de ~
1
/ dz=0.
v2+1

obtenemos
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Tenemos, por tanto,

2
/ 5 dz = 2mi.
N Z —1

Una de las consecuencias méas importantes de la formula integral es que la derivada de una
funcién holomorfa en un dominio es también holomorfa.? En particular, escribiendo la ex-
presién (2.35) en la forma

1 fED
f(Z)—% ,YZI—ZdZ’

(2.36)

y teniendo la continuidad de f(2’) podemos escribir

ferAn—f(z) 1 H f() _f(Z’)]dz’
Az 2mi J, |2 —2— Az 2 —2z]| Az

_ 1 },{7 IE) gy L }{[ &) FE) f(Z’)AZ] 2

2mi ), (2) — 2) 270 2—z—Az Z—2z (=22 Az

Si el integrando en ultimo término estd acotado, la correspondiente integral se anula en el

limite Az — 0,
7{[ f() f(Z) f(Z’)AZ] dz'| _ ?g(z’—z)é((zz/’)ilzz/—Az)

Z—z2—Nz Z—z (Z—2)?2]| Az

Azl — 0
Az | Z|Az—>0 ’

dando lugar a una representacién integral para la derivada

df(z) L?{ ( f(#) _d7 | (2.37)

dz 2mi z — 2)
Este resultado se puede generalizar por induccién a derivadas superiores,

ﬂ )= n! f(z)

dz”( T 2m o =z

dz (2.38)

permitiéndonos concluir que para si una funcién de variable compleja es derivable una vez
(garantizando, por tanto, la continuidad), esta serd derivable a cualquier orden. En otras
palabras, las funciones holomorfas son ”suaves” en su dominio de holomorfismo y no presentan
saltos o zonas puntiagudas.

2.7 Teorema de Morera

El llamado teorema de Morera puede entenderse como el “inverso” del teorema de Cauchy.

3Nétese, por el contrario, que la derivabilidad de funciones reales de variable real no implica en absoluto
que las derivadas de la funcién sean nuevamente derivables.
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Teorema de Morera

Si la integral de una funcién continua en una regién abierta y conexa D se anula para
cada curva cerrada, simple y regular por tramos en D,

j{f(z) dz=0, (2.39)

entonces f(z) es holomorfa en D.

La demostracién es sencilla. El hecho de que la integral se anule para cualquier curva - nos
dice que f(z) no depende del camino, permitiéndonos definir

F(z) = / TR i (2.40)

con zg un punto fijo en D y z variable en D. Teniendo en cuenta ahora la continuidad de

f(2),

F(z + AAZZ)« —F(2) _ ALZ </0+A _ /o> F()de = ALZ /:MZ Fde . (2.41)

separando explicitamente dicha funcién en la integral,

F Z+AZ — F(z 1 2+Az 1 z+Az
e ) I (CRY CI R () L Ey O Ry M VIEI Y (E) V=S
y teniendo en cuenta la desigualdad de Darboux,
1 z+Az , , ,

i) U -r@la) < e 1) - fG)] 2,00 (242

concluimos que la funcién F(z) es holomorfa (derivable)
dF(z)
T = f(z). (2.43)

Puesto que f(z) es la derivada de una funcién holomorfa, es también holomorfa, completando
la demostracién del teorema.

2.8 Teorema de Liouville

Teorema de Liouville

| Si una funcién de variable compleja f(z) es holomorfa y acotada por una constante M,
|f(2)] < M, en todo el plano complejo, entonces f es constante.
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Para demostrar el teorema consideremos una circunferencia de radio r y centro zg en el plano
complejo que encierra otro punto z; € C. De acuerdo con la férmula integral de Cauchy,
podemos escribir

f(z1) = f(z0) = ! ?{ /) dz'— ! j{ () d7' = 21—'20%( J(2)dz . (2.49)

i ., 2 — 2 omi f, 2 — 2 271 2l —z1)(2' — 20)

Teniendo en cuenta que
lz—z0l =7, |z—z1|=|2—20+20—21]| > |z— 20| — |20 — 21| =7 — |20 — 21| > 1/2, (2.45)
y escogiendo 7 lo suficientemente grande para como para que |zg — 21| < r/2, obtenemos

f f(z)dz < |21 — 20| M (277) 2|21 — 20| M
(
7

_ |21 — 20| _
z—2z1)(z—20)| ~ 27 (r/2)r r

2T

|f(z1) = f(20)] , (2.46)

Puesto que | f(z1) — f(20)| — 0 cuando r — oo, f(z) debe ser necesariamente constante, como
queriamos demostrar.

Demostracion del teorema fundamental del algebra

El teorema de Liouville proporciona una de las demostraciones mas sencillas del
teorema fundamental del Algebra, el cual establece que toda ecuacién polinomial
P(z) = ap+ a1z + aszZ + -4 apz" = 0, con n > 1y a, # 0 tiene por lo menos
una raiz. En particular, si P(z) = 0 no tuviera ningin cero, la funcién f(z) = 1/P(2)
serfa analitica en todo el plano complejo, estando ademds acotada para |z| — oo (en
concreto, |f(z)| = 1/|P(z)| tiende a cero cuando |z| — o0). De acuerdo con el teorema
de Liouville esto implicaria que f(z), y por ende P(z), deberian ser constante, lo cual
es obviamente una contradiccién. Se concluye, por tanto, que P(z) = 0 debe tener por
lo menos una raiz.



CHAPTER 3

SERIES DE TAYLOR Y DE LAURENT

3.1 Series de potencias y criterios de convergencia

Consideremos una serie de potencias infinita centrada en zy € C,
oo
> fal2), (3.1)
n=0

con z € C, fn(2) = ai (z — 20)" y an € C. De manera andloga al caso real podemos introducir
diferentes criterios de convergencia:

e Convergencia puntual: Se dice que la serie converge puntualmente a una funcién
f(2) en un dominio D si y solo si, para cada z,

k
Jim (Z fi(2) —f(2)> =0. (3.2)

e Convergencia absoluta: Se dice que la serie converge absolutamente si lo hace la
serie de sus valores absolutos, > 7 |fn(2)|. La convergencia absoluta de una serie
implica su convergencia puntual.

Los términos de una serie absolutamente convergente pueden reordenarse de cualquier
manera, y todas esas series reordenadas convergen a la misma suma. Asimismo, la
suma, la diferencia y el producto de series absolutamente convergentes es absolutamente
convergente. Esto no es cierto, sin embargo, para series condicionalmente convergentes.

e Convergencia condicional: Se dice que la serie es condicionalmente convergente si
esta converge, pero no lo hace la serie de sus valores absolutos > 7 | fn(2)].
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e Convergencia uniforme: Se dice que una serie de potencias infinita Y 7 f(2)
converge uniformemente a una funcién f(z) en un dominio D si y solo si

k
> fnl2) = f(2)

n=0

lim [sup ] =0. (3.3)
k—oo | zeD

3.1.1 Criterios de convergencia

e Criterio de comparacién: Si )’ |g,(z)| converge y | fn(2)| < |gn(2)], entonces > frn(2)
converge absolutamente. Sin embargo, si Y |gn(2)] diverge v |frn(2)| > |gn(2)], D_ | fn(2)]

diverge, pero Y f,(z) puede converger o no.

Puesto que |z| < 1 podemos escribir

n

z R 1
n(n-l—l)‘ n(n+1) = n(n+1)

<1
_n2'

Identificando f,(z) = 2"/n(n + 1) y gn(z) = 1/n?, aplicando el criterio de com-
paracién y teniendo en cuenta que la suma Y. 1/n? es una serie p convergente,
concluimos que Y |fn(z)| converge, y, por tanto, que Y f,(z) converge absolu-
tamente.

e Criterio del cociente: Dado el limite L = lim,, o0 | frt1(2)/fn(2)], la serie > fr(2)
converge (absolutamente) si L < 1y diverge si L > 1 (o L = +00). Si L = 1, este
criterio no proporciona informacion.

2%

Excluyendo el punto z = 0 para el que la serie converge y aplicando el criterio
del cociente, obtenemos

fn—i—l(z)’ — lim
fn(2) n—00

Por tanto, la serie converge unicamente para z = 0.

1) n+1
L= lim (n+ Dl
nlzm

= lim (n+1)|z| = 0.
n—o0 n—oo

e Criterio de la raiz n-ésima: Dado el limite L = lim ,,_,o0 /| fn(2)], la serie Y fn(2)
converge (absolutamente) si L < 1y divergesi L > 1. Si L = 1 o no existe, esta prueba
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no proporciona informacién.

2%

. . . , o n o .,
Aplicando el criterio de la raiz a la serie Y =7y teniendo en cuenta la relacién
lim,, .o V1! = co, obtenemos

n

La serie es absolutamente convergente para todo z en el plano complejo.

L = lim ¢
n—o00

n!

e Féormula de Cauchy-Hadamard: La férmula de Cauchy-Hadamard

R= ! (3.4)

limsup,,_,o ¥/|an]

permite determinar el radio de convergencia R de una serie de potencias Y -~ fn(2)
con fn(2) =ak (2 — 20)" y an, 2,20 € C. Esta férmula involucra el limite superior,

limsup z, = lim (sup xg)
n—00 n—=00 >y

un concepto matematico definido como el limite del supremo o minimo limite superior de
una secuencia x,. Es decir, estamos tomando el supremo de todos los términos a partir
del término n-ésimo hasta el final de la secuencia y tomando el limite cuando n tiende
a infinito. En términos simples, este resultado nos dice que el radio de convergencia de
la serie esta relacionado con la tasa de crecimiento de los coeficientes a,. Si el limite
limsup,,_, {/|an| existe, la serie converge absolutamente para |z| < Ry diverge para
|z| > R. Si el limite es oo, el radio de convergencia es R = 0, indicando convergencia
solo en el centro de la serie.

2%

Los criterios del cociente y la raiz n-esima no permiten determinar la con-
vergencia de la serie ) > _0(smn) , puesto que los limites de las sucesiones
|sinn|/|sin(n+ 1)| y {/|sinn| no ex1sten. El criterio de Cauchy-Hadamard es,
sin embargo, aplicable. Puesto

n—oo

= limsup {/|sinn| = l1m (sup |sink|> = lim 1=1.1,
R k> n—00
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el radio de convergencia de la serie es R = 1.

3.2 Series de Taylor

Una de las propiedades mas importantes de las funciones holomorfas es que son desar-
rollables en series de Taylor. En concreto, dada una funcién de variable compleja f(z)
holomorfa en el interior de un disco D de centro z = zg y radio r, podemos escribir

con z € D y v una circunferencia centrada en zy y contenida en D, con z en su interior.'

Reescribiendo el kernel 1/(2' — 2) en la integral (3.5) como una serie geométrica

1 o 1 B 1 1 _ 1 i 2 — 2 n
2 — 2 - (z/—ZO)_(z_ZO) - z/_z()l_ (z—z0) Z,_Z() Z,_Z(] ) (36)
(2'—20) n=0
conn >0y
Z— 20
<1, 3.7
2 — 20 ( )
obtenemos

f(2) 1 7( dz'y % (z — 20)" . (3.8)
ol

a 211 "0 (Z/—zo)

Puesto que la serie de potencias en esta expresién es uniformemente convergente dentro de
su radio de convergencia, podemos integrar cada sumando de manera individual, obteniendo
una expansion en serie o desarrollo de Taylor,

&)=Y an(z—2)",  an=o f%dz’—lm, (3.9)
n=0 v

27 z— 2z T nl dzm

donde en el tltimo paso hemos tenido en cuenta la representacion integral para la derivada
en (2.37). Nétese que la expansién (3.9) deja de ser valida si la circunferencia v encuentra

!Dicha circunferencia puede por supuesto deformarse en cualquier otra curva cerrada, siempre y cuando
esta no incluya puntos singulares de la funcién y contenga 2o en su interior.
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un punto en el que f(z) no es holomorfa o derivable en sentido complejo. Esto determina el
radio de convergencia de la serie.

|l Gl it i e 1) = o i 0 o= g

Para calcular la serie de potencias de f(z) = zsin z en torno a zp = , calculamos sus

derivadas,
f/(z) =sinz+ zcos z,
f"(z) =2cosz — zsinz,
f"(z) = —3sinz — zcos 2,
FO)(2) = —4cosz + zsin z,

@ (2) = (-1)"(2n + 1) sinz + (—=1)"z cos 2,
FP(2) = (=1)"*1(2n) cos z + (—1)"zsin z .

Evaluando en z = zy = 7, y usando la segunda expresién en (3.9), podemos identificar
facilmente los siguientes coeficientes de la serie de Taylor,

v

apg =0, ay = —m, az = —1, a3 = 3
1 T 1
CL4—3!, CL5——5!, aﬁ__5!7

o de manera mas general

(=" n_w
S = (-1t
a2n (2n — 1)' 5 a2n+1 ( ) on + 1
La correspondiente serie de Taylor de f(z) = zsin z en torno a zy = 7 toma, por tanto,
la forma
1
f(2) :—7r(z—7r)—(z—7r)2+%-(z—7r)3+§-(z—7r)4—%-(2—%)54-...
o _ \2n+1 o (Z _ 7.‘.)2n
= -1 nﬂw_k _yne 2
nz—:o( ) (2n+1)! nz::l( ) (2n —1)!

Este método proporciona una manera sistematica de calcular la serie de Taylor de una de
funcién holomorfa dada y su correspondiente radio de convergencia. Para expansiones en
torno a zp = 0 (llamadas usualmente series de Maclaurin), tenemos por ejemplo?

2En el caso de funciones multivocas utilizamos la rama principal.
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Funcion Serie en torno a zg = 0 | Radio de convergencia
= >0 ?" |lz[ <1

ﬁz S0 el |z <1

cos z Zf;ozo(—l)”% |z| < o0

sin 2 Efzo(—l)"% |z| < o0

e Yonto i 2| < o0

log(1+2) | SoZ, G 2 <1

CRESTIND 0 B I o] <1

n

El conjunto de puntos del dominio donde una funcién es analitica se llama dominio de analiti-
cidad de la funcién. Si el dominio de analiticidad coincide con todo el plano complejo (es
decir, si la funcién es desarrollable en series de potencias en un entorno de cada punto con
un radio de convergencia infinito), la funcién se llama entera. Por ejemplo, las funciones e*
sin z,cos z en la tabla anterior son funciones enteras. Viceversa, si una serie de potencias
tiene un radio de convergencia infinito, la serie representa una funcién entera.

En determinadas ocasiones es posible obtener la expansién en serie de potencias mediante tru-
cos y manipulaciones algebraicas, evitando asi el tedioso calculo de coeficientes que acabamos

de ilustrar en el ejemplo anterior.

2
—(1_zz2)2 en torno a 2y = 0, podemos hacer

Para calcular la serie de potencias de f(z) =

uso de la expansion

1
— =l4a+a’+a’+...
11—«

vélida para |a| < 1. Tomando en particular a = 22, obtenemos

1

12 =1+22+24 42584+,

Derivando a ambos lados de esta expresion,

2
ﬁ:22+423+625+,
—Z

y multiplicando por z/2, tenemos

22

[o¢]
.2 4 6 _ .2n
—(1_22)2—2 +2z254+32°+...= E n-z“".
n=0
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El resultado (3.9) ilustra el hecho de que toda funcién holomorfa es también analitica o
desarrollable en series de potencias y viceversa. Esta tultima propiedad es una consecuencia
directa del teorema de Morera, que establece que toda funcién analitica es también holomorfa.
De hecho, desarrollando f(z) en serie de potencias en un entorno del origen® dentro del radio
de convergencia,

f(z) = Zanz", lz| < R, (3.10)
n=0

e integrando el resultado término a término? a lo largo de una curva cerrada v dentro también
del radio de convergencia,

jéf(z)dz: 7{ {;anz”}dz:

verificamos facilmente que f(z) cumple el mencionado teorema, siendo, por tanto, holomorfa
dentro del radio de convergencia. Este resultado permite utilizar indistintamente los términos
holomorfa y analitica.

o0

Zanfz"dz =0, (3.11)

n=0 v

3.3 Series de Laurent

Hemos visto que si una funcién es holomorfa en un punto zy y en todo su entorno circular,
entonces puede ser desarrollada en una serie de Taylor alrededor de ese punto. A continuacién,
desarrollaremos un nuevo tipo de serie doblemente infinita de gran utilidad.

Consideremos una funcién f(z) holomorfa en una regién anular o corona circular r; <
|z — 20| < 7o alrededor de un punto zy en el cual f(z) no es necesariamente holomorfa. Dado
un punto z dentro de la corona circular y una curva cerrada a trozos C' compuesta por los
arcos y segmentos en la figura y encerrando una regién simplemente conexa en la que f(2)
es holomorfa, podemos escribir

2 20 }[/ dz' =0. (3.12)
C

Eliminando los segmentos como hicimos en la seccion 2.5, obtenemos

3No es restrictivo considerar el origen.
4Nétese que z" es holomorfa para cada n > 0.
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r, 2 — 2 r, 2 —z

Mdz' - MdZ' —]{ /(Z) dz' =0, (3.13)

0 equivalentemente

%ﬂﬂwg 'ﬂ)z_ I (3.14)
Y

z—z r, 2 —z Flz—z

Puesto que la curva v en este limite sin segmentos contiene z, la representacién integral de
Cauchy en (2.27) nos permite escribir

ACIPRIS Y OF ICOPRINS WY F [C RIS

— - 3.15
f(z) = 2mi Wz—zz 2 Jp, 2 — 2 2mi Jp, 2 — 2 ( )
12 11
Escribiendo el kernel 1/(z" — z) en I como
1 1 1 JR— (zz())n 2 (z—2z)"
= = = —_— 3.16
2 —z z—zol—zz_zz% z’—zonzz:o z— z 7;)(2/_20)%4-1 ( )
y teniendo en cuenta que para 2z’ € I's,
zZ— 2y
<1, 3.17
2=z ( )

la integral sobre I's en (3.15) se puede expresar en términos de potencias positivas de z — zp,

1 1 !
IHh=— 1z Zan (z —20)", ap = — L dz, (3.18)

_ ; ’r_ n+1
2ni Jp, 2 z = 27i Jr, (2 — 20)

en perfecta analogia con la serie de Taylor. Por el contrario, para 2z’ € I'; tenemos

7 — 2

<1. 3.19
P (3.19)

Escribiendo el correspondiente denominador en la integral I; en la forma

1 I 1 B 1 1
2 —z z—2 Z—Zo—(z'—?fo)_ (Z_Zo)l_zzlf_izz(?
1 /(2 —%\" 2 (2 = z)" 1 "
:_Z_ZO§<Z_ZO> :_ng_;}(z,_w(z—zo),

(3.20)

obtenemos una serie uniformemente convergente que se puede integrar término a término,

1 ICOIw 1 F() ,
L=_— dz' = — 2\ d _ (2 — ’
Y omi Jr, A 2 ? omi 7;) jél (o' — 21 &* (2 = 20)" n§<0a z—z0)"
(3.21)

con

dz. (3.22)
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Combinando finamente las ecuaciones (3.15), (3.18) y (3.21), y teniendo en cuenta que las
curvas de integracién en la regién de holomorfismo pueden variarse libremente para unificar
I'y y I's en una tnica curva de Jordan I' con zp en su interior, obtenemos la llamada serie o
desarrollo de Laurent®

400 ’
f@) =Y an(z—20)", W, = Lé(zf(—z)nﬂdz’, (3.23)

involucrando en general potencias positivas y negativas en cada punto z dentro de la corona.
Segun esta demostracién, el radio menor de la corona delimita un disco en el plano complejo
fuera del cual la serie de potencias negativas converge, mientras que el radio exterior identifica
un disco dentro del cual la serie de potencias positivas converge. Nétese en particular que no
se excluye el caso r1 = 0 y que ro = oo si f(z) es holomorfa en todas partes, excepto en el
punto zp o un entorno del mismo.

La suma de potencias positivas se conoce como la parte analitica de la serie de Laurent
de f(z) en z = zp, mientras que el resto de la serie, que consta de potencias negativas, recibe
el nombre de parte principal de la serie de Laurent de f(z) en z = zp. Si la parte principal es
cero, la serie de Laurent se reduce a una serie de Taylor. El coeficiente a_; recibe el nombre

de residuo
a_1 = Res(f,20) -

 Bjemplo: Sere do Laurent de /(3= 3+ 2y en lacorena 1 <i <2

El primer término de la funcién

1 1

f(z):z—2+z—1

admite una expansién de Taylor en el disco |z| < 2,

1 11 e 1 = 1
P —5T T = 5wt =D gt
2 n=0 n=0

Aunque el segundo término admite una expansién de Taylor en el disco |z| < 1, lo que
necesitamos realmente es una expansion fuera de este disco. Para obtenerla factor-
izamos 1/z y expandimos el resultado en potencias de 1/z con radio de convergencia
|1/z| <1, es decir, |z| > 1,

111 _1i1_°°1
z—1 21-1 " z4&um Lan’
z n=0

n=1

® Aunque los coeficientes de esta serie son formalmente los mismos que los del desarrollo en serie de Taylor,
estos no son ahora expresables mediante la derivada n-ésima de f(z) en el punto zo.
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La serie de Laurent de f(z) en el anillo 1 < |z| < 2 es, por tanto,

=1 =1
) ==Y g+ Y
n=0 n=1

3.4 Ceros y Singularidades

3.4.1 Ceros

Si una funcién holomorfa f(z) se anula en un punto z = zg, ese punto recibe el nombre de
cero de f(z), siendo el orden n del mismo determinado por las condiciones

df B dn—lf

dn
feo) =T (e = .. = S !

(20) =0, dzm

(z0) £ 0. (3.24)

En este caso, si f(z) es holomorfa en un entorno de zy incluyendo zg, los primeros n coeficientes

de su serie de Taylor son idénticamente nulos, ag = a1 = ...,= a,_1 = 0, permitiéndonos
escribir
oo
F(2) =an(z—20)" 4 ans1 (2 —20)" 7 4+ ... = (2 — 2)" Z gk (2 — 20)" = (2 — 20)" g(2) ,
k=0
(3.25)

con g(z) una funcién holomorfa, regular y no nula en z = zy, y por continuidad no nula en
todo un entorno de zy. Esto implica a su vez la existencia de un entorno completo de zg en
el cual la funcién f(z) es no nula. El punto zy es, por tanto, un cero aislado.

Si es imposible determinar el orden del cero de una funcién holomorfa f(z) en un entorno
completo de zg, 0 equivalentemente, si todas sus derivadas son nulas en ese punto, la expansién
en serie de Taylor impone que f(z) sea idénticamente nula en ese entorno. Esto implica en
particular que los ceros de una funcién analitica son necesariamente aislados, formando a lo
sumo un conjunto discreto sin puntos de acumulacién en el dominio de holomorfismo, como
en la figura. Una funcién que es analitica en todas partes del plano complejo, excepto en una
cantidad finita de polos, se llama funcién meromdrfica.

Por el contrario, si un punto zg es un punto de acumulacién de ceros para una funcién f(z)
no nula, entonces necesariamente serd un punto no holomorfo de la funcién.
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Ejemplo:

La funcién f(z) = sinz tiene infinitos ceros en z = km. Sin embargo, dado que el
dominio de f es todo el plano complejo, estos no tienen ningiin punto de acumulacién,
no existiendo, por tanto, ninguna contradiccién en que f no sea idénticamente cero.

3.4.2 Polos o singularidades aisladas

Las series de Laurent permiten clasificar singularidades aisladas. En concreto, si f(z) tiene
una singularidad aislada en un punto z = zg y es analitica dentro de un disco centrado en ese
punto, pero excluyéndolo, podemos desarrollar la funciéon en una serie de Laurent alrededor
de 20,

a_q a_9

f(z):Zan (z—20)" + + 5+ ... (3.26)
n=0

Z2—z0  (z—z0)

Es claro que si f(z) es singular en 2, al menos uno de los coeficientes a_,, es necesariamente
no nulo. En particular:

e Sia_j # 0y todos los demés coeficientes de las potencias negativas son nulos, decimos
que zg es un polo simple.

® Sia, 0y a_(y41) =a_(nq2) = ... = a_(nyk) = -.. = 0, el punto zg se llama polo de
orden n. En este caso, podemos escribir
k a—1 a2 A—np
z) = ap(z —29)" + +... .+t
f(2) % O e ooy G
1 _
= m a—p + ...+ a1 (z—2)" T+ Z ak (2 — ZO)n+k (3.27)
0 k>0
1 = k h(z)
BECEED i Sl Gt e

k=0
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con h(z) una funcién regular y no nula en zp y por continuidad en todo un entorno del
mismo. En otras palabras, si una funcién f(z) tiene un polo de orden n, la funcién
reciproca 1/f(z) tiene un cero de orden n en el mismo punto.

e Si nimero de coeficientes no nulos para las potencias negativas a_,, es infinito, el punto
zo se llama singularidad esencial aislada. La caracteristica més importante de una
singularidad esencial se desprende del teorema de Weierstrass, que establece que si una
funcién f(z) tiene una singularidad esencial aislada en un punto zg, entonces, para
cualquier € > 0 y 6 > 0, existe algin punto z con |z — 29| < ¢ tal que

|f(z) —al <, (3.28)

con a un numero complejo arbitrario. En otras palabras, en cualquier entorno de una
singularidad esencial aislada zg, la funcién f(z) varia tan rapida y ampliamente que
puede tomar cualquier valor complejo.

 Ejemnplo: Desarrollo en sere de f(5) ==

La funcién e/* es analitica en todo el plano complejo, excepto en el origen, donde

presenta una singularidad esencial. Su expansién en serie de Laurent de e!/# en torno
a este punto contiene de hecho un nimero infinito de potencias negativas,

1 11
el/? - _
=1+7 +2‘22+3'z3 Zn'z"'

3.4.3 Singularidades evitables

Si f(z) no estd definida en un punto z = 2y pero existe el limite lim,_,,, f(z), entonces
z = 29 es una singularidad evitable. En tal caso, la funcién f(z) en z = 2y se define como
f(z0) =lim .4 f(2), con lo que f(z) es analitica en z.

EEEET D))

La singularidad de f(z) =sinz/z en z = 0 es una singularidad evitable, puesto que el

limite .
i SRZ _ .
z—0 =z
existe y podemos definir _
f(0) = lim e,
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De hecho, dicha singularidad aparente puede eliminarse mediante un mero truco alge-

braico,

sin z 1 23 25 T 22 A 5 > 220

I [ A N (S | | e S
; z(z TR T > T T nzo( ) en )

Si definimos f(0) = lim,_,o f(2) = 1, la funcién f estd dada por la suma de la serie
anterior para todo z € C, y es, por tanto, entera.

3.4.4 Puntos en el infinito

Las consideraciones anteriores se extienden de manera natural al estudio de una funcion
analitica en el infinito. En particular, realizando el cambio de variable z = 1/( y definiendo
©(¢) = f(1/¢), podemos estudiar el comportamiento de una funcién f(z) en z = 0o a través
del comportamiento de ¢(¢) en ¢ = 0. Diremos asi que z = 0o es un cero de orden n, un polo
de orden n, o una singularidad esencial aislada de f(z), si ( = 0 es respectivamente un cero
de orden n, un polo de orden n, o una singularidad esencial aislada de ¢(().



CHAPTER 4

INTEGRALES POR RESIDUOS

4.1 Residuos

Consideremos una funcién analitica f(z) en una regién abierta D, excluyendo un punto z
en el que f(z) tiene una singularidad aislada. Dada una curva de Jordan « en torno a =z,
regular a trozos, orientada en sentido positivo y contenida en D, la integral

1
j{f(z) dz, (4.1)

211

define el residuo de f(z) en zy,

Resf(z)|Z:ZO %ff(z) dz . (4.2)

Esta definicién se extiende también a puntos regulares de la funcién, siendo el residuo nulo
en ese caso por el teorema de Cauchy.

Ejemplo: Residuos y fisica de fluidos

Fisicamente, el valor del residuo determina la importancia de la singularidad. Con-
sideremos por ejemplo el caso del fluido en dos dimensiones analizado en la Seccién
1.11.1. Como vimos alli, la funcién de variable compleja f(z) asociada al movimiento
solenoidal e irrotacional de dicho fluido es completamente regular. La introduccién
de fuentes, sumideros o vortices da lugar a violaciones de las condiciones de Cauchy-
Riemann y, por tanto, del cardcter holomorfo de f(z). El residuo de la funcién en ese
punto caracteriza precisamente la intensidad de la violaciéon. En particular, dada una
curva cerrada «y en torno a una singularidad aislada zg, la separacién de la ecuacién



4.2 Teorema de los residuos 59

(4.2) en partes reales e imaginarias implica

(uwdx —vdy) = —27 Im Res f(2)]

z=zp

(udy + vdr) = 2w Re Res f(z)]

z=z0 °

5o S

Expresando estas integrales de contorno en términos de las componentes del campo de
velocidades identificadas en la Seccién 1.11.1, u(z,y) = Vi (z,y) y v(z,y) = —Vy(z,y),
obtenemos las relaciones

f(de:UJrV;’,dy) :y{f/'-i’ds = —27Im Res f(2)|,_,, ,
v v

—

f(dey—Vyd:E) :%V-ﬁds = 2m Re Res f(2)],—,, »
gl v

con T y 71 los vectores tangente y normal a la curva «y. La parte imaginaria del residuo
resulta, por tanto, proporcional a la intensidad del vértice en z = 2, con el signo del
mismo indicando la direccion de rotacién. La parte real del residuo es, por otro lado,
proporcional a la intensidad de emisién de la fuente o absorcién del sumidero, segin
el signo del mismo.

4.2 Teorema de los residuos

Consideremos ahora la integracién de una funcién de variable compleja f(z) a lo largo de una
curva cerrada vy que rodea un nimero finito m de singularidades aisladas z; (j = 1,...,m).
Encerrando cada una de estas singularidades en el interior de una serie de circunferencias ;
conectadas a v mediante pares de segmentos infinitesimalmente préximos, podemos recorrer
el contorno de integracién de manera conexa, es decir, sin atravesar puntos singulares de f(z).
Haciendo coincidir la direccién de integracién en cada circunferencia v; con la de la curva -,
la integral sobre -y se convierte en una integral sobre todas las “islas” contenidas en esta,

F@dz=" ¢ F(2)dz=2mi Y Res f(2)]ecs,
fra=3{

@71
O}
@% (4.3)

donde en el dltimo paso hemos hecho uso de la definicién (4.2). Esta férmula aparentemente
trivial constituye el llamado Teorema de los Residuos, un resultado de alcance extraordinario
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que, como veremos en la seccién 4.4, nos permitira calcular integrales definidas dificilmente
abordables por métodos tradicionales de variable real. Pero antes de eso, veamos como cal-
cular residuos de manera eficiente.

4.2.1 Residuos de polos de orden n mediante limites y derivadas

Como vimos en la seccién 3.4.2, si z = zy es un polo de orden n, la funcién f(z) en un entorno
de zp puede escribirse como
9(2)
z)= —F——— 4.4
=20 (44)
con g(z) una funcién regular y no nula en zp. Teniendo en cuenta la representacién integral
(2.38), esto implica que

1 g9(2) B 1 dnt
Res flemn = 57 § o s ® = g1 (1.5
0 equivalentemente
1 dn—l
Res f(2)] 2=z = lim [(z—20)"f(2)] , (polo de orden n), (4.6)

(n— 1) 2=z dzn1

con y una curva en torno a zg. Esta expresion proporciona un método tutil para calcular
los residuos asociados a singularidades de tipo polar, tomando una forma particularmente
sencilla para polos simples,

Res f(2)|,—,, = lim (2 — 20)f(2), (polo simple) . (4.7)

Z—r20
Si dicho polo simple surge ademés de un cociente
p(z
f(z) = —( ) , (4.8)

con ¢ (z9) = 0, podemos escribir el residuo como

Res f(2)] = lim =20)p(z) _ lim Mp(z), (4.9)

z=z9 25570 q(z) z2—20 q(z) —q (20)

0 equivalentemente

Res f(z2)] = (polo simple) . (4.10)
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Ejemplo: Residuos de f(z) = ﬁ%ﬁm

La funcién f(z) tiene un polo doble en z = —1 y dos polos simples en z = +2i.
Teniendo en cuenta la expresion (4.6), el residuo en z = —1 estd dado por

22— 2z ]_ 14

1 d
Res S(Eem = 1,00, 7 |6+ 0 3 T g | = 35

1! z2»—1dz

Andlogamente, los residuos en z = 424 son respectivamente

22— 22 }_ 4+4i  T+i
-

Res f(2)]o=42s = lim, {(z — %) (z+12(z—2i)(z+2i)]  (2i+1)2(4i) 25 °

Res f(2)];=—2i = hm [(z + 2i)

—2

22— 22 _ 4— 4 7=
(z+1)2(z — 20)(z + 21')} T (=2i+1)2(—4i) 25

4.2.2 Residuos de polos de orden n mediante la serie de Laurent

Si una funcién f(z) tiene una singularidad aislada en zy y es holomorfa en un anillo en torno
a dicho punto, podemos realizar un desarrollo de la misma en serie de Laurent. Al examinar
la expresion para los coeficientes a,, en (3.23), observamos en particular que el coeficiente a_1
proporciona, directamente el residuo de la funcién

j{f )dz = Res f(2)],_,, - (4.11)

2m

4.2.3 Residuos en el infinito

Para estudiar el residuo de una funcién en el infinito, construiremos una curva de Jordan o,
encerrando todas las singularidades finitas de la funcién y recorrida en sentido antihorario.
Reinterpretando dicha curva como una curva —v,, en torno a z = oo recorrida en sentido
horario (es decir, con el infinito a su izquierda o interior), podemos escribir

Res f(z) = j{ f(z 5 j{oo f(z)dz. (4.12)

Para evaluar esta integral, realizamos el cambio de variable compleja z = 1/{ introducido
en la seccién 3.4.4. Bajo esta transformacion conforme, el punto al infinito se convierte en
¢ = 0, y la curva 7 se transforma en una curva g en torno al origen, pero recorrida en
sentido opuesto, es decir v se transforma en —7y. Teniendo en cuenta ademas que

dz 1

i o (4.13)
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obtenemos finalmente

Res f(2)] e = 5= ]4 / (%) f—g = Res f2)lz0 = = Res {f (%) é}‘czo ’

con g orientada en sentido antihorario.
Ejemplo: Residuo de f(z) = % en el infinito

Existen funciones de variable compleja que, aun siendo regulares en el infinito, tienen
un residuo no nulo en dicho punto. Por ejemplo, aunque la funcién f(z) = 1/z tiene
un tnico punto singular en z = 0 con residuo

a—1 = Resf(z)|z:0 = 1)

su residuo en el punto regular z = oo (¢ =0, f(1/¢) = () es no nulo,

Res f(2)|,_o = — Res{f <é> é}‘g = —1.
=0

Noétese que la suma de ambos residuos es identicamente cero.

Notese que las consideraciones de la seccién anterior se aplican también al residuo en el
infinito. En particular, si una funcién f(z) admite un desarrollo en serie de Laurent en un
anillo circular r < |z| < oo, con 7 apropiado,

[e.e]
a_ a— a—
flz)= Z akzk:-~+733+722+71+a0+a12+a222+a323+-~ , (4.15)
k=—00
tenemos N 1
a_1 ao aj
f()z-”+a_3C+a_2++++~-, 4.16
¢/ ¢ ¢ ¢ ¢ (4.16)
y, por tanto,

Res f(2)|,_oo = —G-1. (4.17)

En otras palabras, el residuo de una funcién f(z) en z = oo coincide con el opuesto del
coeficiente de 1/z en el desarrollo asintético de f(z) alrededor de z = occ.

4.3 Suma de todos los residuos

El ejemplo de la seccién anterior ilustra un resultado complemetamente general y de gran
utilidad préctica. Consideremos una funcién f(z) holomorfa en todo el plano complejo ex-
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cepto en un numero finito de singularidades aisladas incluyendo potencialmente el punto en
el infinito. Dada una curva de Jordan ~, orientada positivamente y no atravesando ninguna
singularidad, los resultados de la secciéon anterior nos permiten expresar la correspondiente
integral de camino en términos de los residuos interiores a la curva,

j[ f(z)dz=2mi Y  Resf(z), (4.18)
v internos
o alternativamente en términos de los residuos exteriores a ella, incluido el punto en el infinito,
7{ f(z)dz=—2mi > Resf(z). (4.19)
v externos

La suma de todos los residuos, tanto internos como externos a la curva, es, por tanto, nula,

> Resf(z) =0. (4.20)

total

4.4 Calculo de integrales definidas

La aplicacién del teorema de los residuos (4.3) se extiende de manera significativa al calculo
de integrales definidas de funciones reales a lo largo del eje real. Dicho calculo involucra no
solo la determinacion de una funcién de variable compleja adecuada, sino también la eleccion
ingeniosa de una trayectoria cerrada. En la préctica, los tipos mas comunes son los siguientes:

1. Integrales de funcidénes racionales de senos y cosenos sin singularidades en el circulo

2
.71:/ R(cosf,sin®)dt . (4.21)
0

2. Integrales de funcién racionales de variable real R(z) sin singularidades en el eje real y
tal que lim|,_,o 7 R(x) = 0.

+oo
I = R(z)dx. (4.22)
3. Integrales de tipo Fourier
eiix
+oo
I3 = / f(x) § cosma ¢ dx. (4.23)
sen mx

4. Integrales de diversa indole con contornos especiales.

A continuacién analizamos cada uno de estos casos en detalle.
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4.4.1 Integrales con senos y cosenos

Consideremos una integral de la forma
2
L = / R(cos0,sin0) dt (4.24)
0

con R(z,y) una funcién racional (cociente de dos polinomios) sin singularidades en el circulo
22 4+ y? = 1. Parametrizando la circunferencia unitaria en el plano complejo por z = €* con
0 < 0 < 27 y teniendo en cuenta que

3 g 1 1 1 - - 1 1
60 —i6 . 60 —i6
1 S PN = — (e - = —(z-= 4.2
(e ¢ ) 2 (Z z> , sinf 21 <e c ) 21 (z z) (4.25)

cosf =

N | =

. 1
dz =ie®df = izdf, do = —dz, (4.26)

12

podemos interpretar I; como una integral de contorno sobre el circulo |z| = 1 de una nueva

funcién R(z),
1 1 1 1 1 _
h= iz0 \2 )i \F 73 = : 4.2
1 ?{21 i <2 <Z * z) ' 24 <z z>> dz }’il R(z)dz (4.27)

Puesto que R es una funcién racional, E(z) es también racional, y, por tanto, holomorfa en
todo el plano complejo, salvo en un ntimero finito de polos dentro o fuera del circulo |z| = 1,
pero no en él ' Por el teorema de los residuos tenemos, por tanto,

Iy =2mi Y ResR(2) : (4.28)

|zp|<1 =z

con la suma extendida a todos los polos z, dentro del circulo de radio unitario.

2w cos 36 do

Ejemplo: 0 5—4cosf

Introduciendo z = € y teniendo en cuenta las relaciones (4.25) y (4.26) podemos

escribir A ‘
6319 +6—326 Z3 + Z_3
cos 30 = = )
2 2

!Nétese que una singularidad en la circunferencia |z| = 1 implicarfa una singularidad de R(z,y) en 2®+4* =
1, contradiciendo las suposiciones realizadas.
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y

/2” cos 30 de_j{ (2 +27%) /2 dz__lj{ L2 o
o H—4cosb zl=1 5 —4(z2+271) /242 2i =1 2222 - 1)(2—-2)

El integrando de esta expresién presenta un polo triple en z = 0, un polo simple
z = 1/2 y un polo simple en z = 2. De estos, solo el polo triple y el polo simple
en z = 1/2 estén en el interior de la circunferencia |z| = 1. Teniendo en cuenta la
expresion (4.6), los correspondientes residuos estdn dados por

s 2 +1 1 d? [ 4 2 +1 21
) z2( -8

= — lim —
B2z —-1)(2 - 2) 20250 d22 |© 2322 — 1)(z - 2)

241 . 1 2 +1 65
BRe- D2, op2|\" 2)B@-DE-2)] 24

Por el teorema de los residuos, tenemos, por tanto, que

2 6
cos 36 1 2041 1 21 65 T
ao =5 ¢ do——Lomy [2_8] _
/0 5— 4cosf 2 Jr, P22 —-1)(z—2)" zi(m)[s 24] 12

Res [

4.4.2 Integrales a lo largo de todo el eje real

Consideremos ahora integrales de la forma

+oo
I, = R(z)dz, (4.29)

—00

con R(z) una funcién racional de variable real sin singularidades en el eje real y tal que

lim zR(z) =0 (criterio de convergencia) . (4.30)

|x|—o00

Interpretando (4.29) como el limite L — oo de una integral Io(L) definida en un segmento

entre —L y L,
+L
I, = lim R(z)dz = lim Iy(L), (4.31)
L—oco J_, L—oo
y complejizando R(x) mediante la sustitucién del argumento real x por una variable compleja
z = x + 1y, obtenemos una integral

R(z)dz (4.32)

con R(z) una funcién racional (cociente de dos polinomios) convergente en todo el plano
complejo,
lim zR(z) =0, (4.33)

|z] =00
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y conteniendo potencialmente un nimero finito de singularidades de tipo polar en puntos zx
fuera del eje real. Para aplicar el teorema de los residuos elegimos un camino cerrado I'y,
en el plano complejo compuesto del segmento entre —L y L y una semicircunferencia Cy, de
radio L en el semiplano superior, como se muestra en la figura.

A

El valor del radio L se asume lo suficientemente grande como para que todos los polos en el
semiplano superior Im z > 0 estén contenidos en el interior de I';,, permitiéndonos escribir

7§F ) R(z)dz = I(L) + /S ! R(z)dz = 2mi Im%;o Res R(2)|.=., - (4.34)

Teniendo en cuenta que la combinacién del teorema de Darboux y el criterio de convergencia
(4.33) garantiza que la contribucion sobre el arco Cf, se anule en el limite L — oo,

R(z)dz| < wL sup |R(z)] —  lim R(z)dz =0, (4.35)
Cr, zeCp, L—oo Cr,
obtenemos finalmente
Irb = lim R(z)dz = 271 Res R(z)|,=2, - 4.36
Jim § () PO L (1.36)

Ejemplo: [ x%l_“i—l

Usando el hecho de que el integrando es par, podemos reescribir la integral buscada
como una integral entre —oo e oo,

/OO dx _1/°° dx
0o x4+1 2 ) 28 +1°
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El integrando de la correspondiente expresién de variable compleja

% dz /L dx +/ dz
FL26+]._ ,L$6+1 CLZ6+17
presenta polos simples (26 +1 = 0) en 2z = eTi/6, Bmif6 oomif6 oTmi/6 Omi/6 1mi/6

De todos estos, solo los polos en e™/6, 37mi/6 v 57i/6 ost4n dentro del contorno I'y.
Identificando R(z) = 1/(2% + 1) y utilizando la regla de L’Hépital, obtenemos

; 1 1 1 2
= 18 _ /6 1 Lt L —5mif6
Res R(2)|,_orise = z_lfeﬂmi/e {(z e )26 n 1] = Z_l)lewmi/ﬁ o5 66 ,

: 1 1 1 i
Res R(Z)|z:€37ri/6 = hm |:<Z — 637”/6) :| = hm p— 76_571’%/27

2—se3Ti/6 2641 2 e3mi/6 620

3BT/ 2641 2se5mi/6 62D

6
' 1 11 :
Res R(Z)|z:€57ri/6 = lim [(z _ 65#1/6) :| = lim — 66_257”/67
y, por tanto,
dz 1 : 1 ) 1 ) 2
7 —9mi = —57i/6 - —bmi/2 Z,—25mif6| 47 )
j{;L 2611 e [66 + 5¢ + &€ 5

Teniendo en cuenta que la contribuciéon de la integral sobre la circunferencia Cp, se
anula cuando L — 0o, obtenemos

5 /L dz /°° dz 2 . /°° dz s
im — = — = — =,
L=oo J_j 2641 o8 +1 37 o z6+1 3

4.4.3 Integrales de tipo Fourier

Consideremos ahora una integral de tipo Fourier

Is = /+OO f(z) e dx, (4.37)

—00

donde asumimos que la extensién compleja f(z) es holomorfa en el semiplano Imz > 0,
excluyendo a lo sumo un ntimero finito de singularidades fuera del eje real. Al igual que en
el caso anterior intepretaremos (4.37) como el limite L — oo de una integral I3(L) definida
en un segmento entre —L y L,

+L

I f(z)e”dr = lim I3(L), (4.38)
L—oo

= lim
L—oc0 —L
Promoviendo de nuevo el integrando al plano complejo mediante la sustitucién del argumento
real x por una variable compleja z = x 4 iy y eligiendo un camino cerrado I';, compuesto por
el segmento entre —L y L y una semicircunferencia C, de radio L en el semiplano superior,
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podemos escribir

(2)e* dz = I3(L) + : f(2)e”* dz = 2mi Z Res [f(z)eiz}zzzk . (4.39)

ry Im 23>0

Utilizando el teorema de Darboux y la simetria de la funcién sin@ respecto a 6 = w/2,
podemos expresar el valor absoluto de la integral sobre C, en un intervalo 0 < 61 < 0y < 7
en funcién del supremo de |f (Le®) | en dicho arco, M(L) = sup,e¢, |f(2)],

f(Leza)ezLe GiLezGdQ‘ < / ]f(Lew)\Le*LsmgdH < M(L)/ LefLstd@
01 01 01

f(2)e*dz
Cr

< M(L) / LeLsin0qg — o0 (L) / * Le~Lsintgg
0 0
(4.40)

Teniendo ahora en cuenta que la funcién sin @ estd comprendida entre la cuerda y = 20/7 y

la tangente y = 0,

260
— <sinf <6, (4.41)
T

podemos escribir
us s L
/2 re~bsinfqg < /2 re ="0dg = 7T/ e~ %dax =~ (1- e_L) < Z, (4.42)
0 0 2 Jo 2 2
acotando con ello el valor de la integral sobre C7p,

(2)e¥*dz
Cr

< TM(L) (4.43)

Por tanto, si M (L) tiende a cero cuando L — oo, tenemos

I3 = lim f(2)e¥dz = 2mi Z Res [f(z)eizL:Zk : (4.44)
ry

L—o0
Im z;, >0

La demostracién anterior incluye la prueba del llamamdo lema de Jordan.
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Lema de Jordan

Dada una funcién f(z) definida en el semiplano superior con Im z > 0y lim|_,, f(2) =
0 uniformemente con respecto al angulo en un sector 0 < 07 < arg z < 02 < 7, entonces

; (2)e*dz 0 (4.45)
L

con C7, el arco de la circunferencia en dicho sector. Anédlogamente, si lim,|_,q f (z) =0,
entonces

(2)e*dz — 0. (4.46)
CL L—0

Eleccién del contorno de integracién

Noétese que si la integral de tipo Fourier involucra una exponencial con coeficiente
negativo,

+o0o

I3 :/ f(z)e ®dzx (4.47)

— 0o
es necesario cerrar el contorno de integracién por el semiplano inferior Im z < 0, ya que
el término e~** con z complejo diverge en el semiplano superior. De manera general,
en presencia de un factor e** con a complejo, es necesario considerar el semiplano
para el cual |[e®?| < 1.

O cosx

Ejemplo: [ <575 dw

Usando el hecho de que el integrando es par, podemos reescribir la integral buscada
como una integral entre —co e oo,

o o
cos T 1 cos T
o T¢+1 2 ) _ox?+1
Teniendo en cuenta ahora que esta expresion corresponde a la parte real de una funcién

e’/ (22 + 1) y escogiendo un contorno de integracion I'y;, en el semiplano superior,
podemos escribir

% eiz L eix eiz Z eiz
7d2 = / 7d$ +/ 7dZ = 271 R,eS |::| o
T, (22+1) _rr2+1 o 2241 vl (22+1) .

El integrando en esta ecuacion tiene 2 polos simples en z = +4, pero solo uno de ellos,
z =1, estd en el interior de I';,. Teniendo en cuenta (4.7), el correspondiente residuo
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estd dado por

@ 1
(z—i)(z+14)] 2ei’

Tenemos, por tanto, que

L T %1 1
it [ arite =g =g
—L Cr

I I iz
cos ) sen x e m
/ 2 d:v—l—z/ 5 dx+/ ———dz=—.
_rré+1 _rré+1 c, 2 +1 e

Puesto que la integral sobre C}, tiende a cero cuando L — oo, esto implica

/OO CcoS T i T /°° sinx d 0
r=—, z=0.
o T2+1 2e o x2+1

y por ende

4.4.4 Integrales con polos simples en el camino de integracion

4.4.5 Integrales de funciones polidromas
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